Abstract

Permanent magnet synchronous motor (PMSM) is compact and has high-power density. Heat dissipation conditions introduce new challenges and opportunities for further improvement of its power, efficiency, and reliability. In this article, a jet cooling method was proposed. The feasibility of jet cooling method was studied by taking a 600 kW PMSM as a prototype. Based on the Euler two-phase model, the effect of thermal performance was numerically studied, varying different inlet velocity, inlet liquid volume fraction, and jet cone angle. Also, the influence of the revolution speed and number of nozzles on the cooling effect was analyzed. The distribution of temperature and liquid phase was discussed. The numerical results illustrate that the maximum temperature of PMSM is only 370 K, which proves the heat dissipation capacity of the cooling system. At the air gap entrance, the temperature and liquid phase are distributed periodically. Under standard conditions, three nozzles, inlet velocity of 60 m/s, and 0.3 inlet liquid volume fraction can achieve high efficiency cooling. Heat dissipation depends largely on liquid. The cooling effect is enhanced by increasing the inlet liquid volume fraction. The optimal jet cone angle is 0 deg, which allows more liquid phase to enter the air gap. At high rotational speed, to avoid hindering the liquid phase from entering the air gap, the inlet velocity should not be less than 60 m/s.

References

1.
Giangrande
,
P.
,
Madonna
,
V.
,
Sala
,
G.
,
Kladas
,
A.
,
Gerada
,
C.
, and
Galea
,
M.
,
2018
, “
Design and Testing of PMSM for Aerospace EMA Applications
,”
IECON 2018-44th Annual Conference of the IEEE Industrial Electronics Society
,
Washington, DC
,
Oct. 21–23
, pp.
777
798
.
2.
Guo
,
F.-L.
, and
Zhang
,
C.-N.
,
2019
, “
Oil-Cooling Method of the Permanent Magnet Synchronous Motor for Electric Vehicle
,”
Energies
,
12
(
15
), p.
2984
.
3.
McCluskey
,
F. P.
,
Saadon
,
Y.
,
Yao
,
Z.-X.
, and
Camacho
,
A.
,
2019
, “
Cooling for Electric Aircraft Motors
,”
2019 18th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)
,
Las Vegas, NV
,
May 28–31
, pp.
1134
1138
.
4.
Chen
,
Y.-Q.
,
Chen
,
W.
,
Zhou
,
J.
,
Fang
,
Y.-T.
, and
Yao
,
Y.-Y.
,
2016
, “
Multi-Field Coupled Analysis of a Permanent Magnet Synchronous Motor: Application to High Speed Rail Traction
,”
2016 Eleventh International Conference on Ecological Vehicles and Renewable Energies (EVER)
,
Monte Carlo, Monaco
,
Apr. 6–8
, pp.
1
6
.
5.
Kang
,
M.
,
Wang
,
H.
,
Guo
,
L.
,
Shi
,
T.
, and
Xia
,
C.
,
2020
, “
Self-Circulation Cooling Structure Design of Permanent Magnet Machines for Electric Vehicle
,”
Appl. Therm. Eng.
,
165
, p.
114593
.
6.
Deriszadeh
,
A.
, and
De Monte
,
F.
,
2020
, “
On Heat Transfer Performance of Cooling Systems Using Nanofluid for Electric Motor Applications
,”
Entropy
,
22
(
1
), p.
99
.
7.
Gundabattini
,
E.
,
Mystkowski
,
A.
,
Raja Singh
,
R.
, and
Darius Gnanaraj
,
S.
,
2021
, “
Water Cooling, PSG, PCM, Cryogenic Cooling Strategies and Thermal Analysis (Experimental and Analytical) of a Permanent Magnet Synchronous Motor: A Review
,”
Sādhanā
,
46
(
3
), pp.
1
19
.
8.
Li
,
H.-M.
,
2010
, “
Cooling of a Permanent Magnet Electric Motor With a Centrifugal Impeller
,”
Int. J. Heat Mass Transf.
,
53
(
4
), pp.
797
810
.
9.
Zhang
,
Y.-J.
,
Ruan
,
J.-J.
,
Huang
,
T.
,
Yang
,
X.-P.
,
Zhu
,
H.-Q.
, and
Yang
,
G.
,
2012
, “
Calculation of Temperature Rise in Air-Cooled Induction Motors Through 3-D Coupled Electromagnetic Fluid-Dynamical and Thermal Finite-Element Analysis
,”
IEEE Trans. Magn.
,
48
(
2
), pp.
1047
1050
.
10.
Li
,
W.
,
Cao
,
Z.-B.
, and
Zhang
,
X.-C.
,
2021
, “
Thermal Analysis of the Solid Rotor Permanent Magnet Synchronous Motors With Air-Cooled Hybrid Ventilation Systems
,”
IEEE Trans. Ind. Electron.
,
69
(
2
), pp.
1146
1156
.
11.
Liang
,
P.-X.
,
Chai
,
F.
,
Shen
,
K.
, and
Liu
,
W.-G.
,
2021
, “
Water Jacket and Slot Optimization of a Water-Cooling Permanent Magnet Synchronous In-Wheel Motor
,”
IEEE Trans. Ind. Appl.
,
57
(
3
), pp.
2431
2439
.
12.
Sun
,
Y.
,
Zhang
,
S.
,
Chen
,
G.
,
Tang
,
Y.
, and
Liang
,
F.
,
2020
, “
Experimental and Numerical Investigation on a Novel Heat Pipe Based Cooling Strategy for Permanent Magnet Synchronous Motors
,”
Appl. Therm. Eng.
,
170
, p.
114970
.
13.
Xu
,
Z.
,
La Rocca
,
A.
,
Arumugam
,
P.
,
Pickering
,
S. J.
,
Gerada
,
C.
,
Bozhko
,
S.
,
Gerada
,
D.
, and
Zhang
,
H.
,
2017
, “
A Semi-Flooded Cooling for a High Speed Machine: Concept, Design and Practice of an Oil Sleeve
,”
IECON 2017-43rd Annual Conference of the IEEE Industrial Electronics Society
,
Beijing, China
,
Oct. 29–Nov. 1
, pp.
8557
8562
.
14.
Liu
,
C.
,
Xu
,
Z.-Y.
,
Gerada
,
D.
,
Zhang
,
F.-Y.
,
Chong
,
Y.-C.
,
Michon
,
M.
,
Goss
,
J.
,
Gerada
,
C.
, and
Zhang
,
H.
,
2019
, “
Experimental Investigation on Oil Jet Cooling With Hairpin Windings
,”
IEEE Trans. Ind. Electron.
,
67
(
9
), pp.
7343
7353
.
15.
Park
,
M.-H.
, and
Kim
,
S.-C.
,
2019
, “
Thermal Characteristics and Effects of Oil Jet Cooling on In-Wheel Motors in Electric Vehicles
,”
Appl. Therm. Eng.
,
152
, pp.
582
593
.
16.
Davin
,
T.
,
Pellé
,
J.
,
Harmand
,
S.
, and
Yu
,
R.
,
2015
, “
Experimental Study of oil Cooling Systems for Electric Motors
,”
Appl. Therm. Eng.
,
75
, pp.
1
13
.
17.
Davin
,
T.
,
Pellé
,
J.
,
Harmand
,
S.
, and
Yu
,
R.
,
2017
, “
Motor Cooling Modeling: An Inverse Method for the Identification of Convection Coefficients
,”
ASME J. Therm. Sci. Eng. Appl.
,
9
(
4
), p.
041009
.
18.
Lim
,
D.-H.
, and
Kim
,
S.-C.
,
2014
, “
Thermal Performance of Oil Jet Cooling System for In-Wheel Motor in Electric Vehicles
,”
Appl. Therm. Eng.
,
63
(
2
), pp.
577
587
.
19.
Petrov
,
I.
,
Lindh
,
P.
,
Niemelä
,
M.
,
Scherman
,
E.
,
Wallmark
,
O.
, and
Pyrhönen
,
J.
,
2019
, “
Investigation of a Direct Liquid Cooling System in a Permanent Magnet Synchronous Machine
,”
IEEE Trans. Energy Convers.
,
35
(
2
), pp.
808
817
.
20.
Xiong
,
K.
,
Li
,
Y.-H.
,
Li
,
Y.-Z.
,
Wang
,
J.-X.
, and
Mao
,
Y.-F.
,
2019
, “
Numerical Investigation on the Thermal Performance of Nanofluid-Based Cooling System for Synchronous Generators
,”
Entropy
,
21
(
4
), p.
420
.
21.
Tikadar
,
A.
,
Johnston
,
D.
,
Kumar
,
N.
,
Joshi
,
Y.
, and
Kumar
,
S.
,
2021
, “
Comparison of Electro Thermal Performance of Advanced Cooling Techniques for Electric Vehicle Motors
,”
Appl. Therm. Eng.
,
183
, p.
116182
.
22.
Lindh
,
P.
,
Petrov
,
I.
,
Pyrhönen
,
J.
,
Scherman
,
E.
,
Niemelä
,
M.
, and
Lmmonen
,
P.
,
2019
, “
Direct Liquid Cooling Method Verified With a Permanent-Magnet Traction Motor in a Bus
,”
IEEE Trans. Ind. Appl.
,
55
(
4
), pp.
4183
4191
.
23.
Sindjui
,
R.
,
Zito
,
G.
, and
Zhang
,
S.-M.
,
2022
, “
Experimental Study of Systems and Oils for Direct Cooling of Electrical Machine
,”
ASME J. Therm. Sci. Eng. Appl.
,
14
(
5
), p.
051007
.
24.
Amin
,
D.
,
Walvekar
,
R.
,
Khalid
,
M.
,
Khalid
,
M.
,
Vaka
,
M.
,
Mujawar Mubarak
,
N.
, and
Gupta
,
T. C. S. M.
,
2019
, “
Recent Progress and Challenges in Transformer Oil Nanofluid Development: A Review on Thermal and Electrical Properties
,”
IEEE Access
,
7
, pp.
151422
151438
.
You do not currently have access to this content.