Abstract

A serpentine channel cold plate is a unique configuration of cold plate used extensively in battery thermal management systems due to its low-pressure drop and high heat transfer performance. Generalized analysis on serpentine channel cold plate for battery thermal management is very limited, especially using the finite element method (FEM). Through this study, we seek to obtain the maximum temperature on the cold plate subjected to uniform heat flux conditions from the Li-ion battery pack. The governing equations for the heat transfer through the cold plate under steady-state conditions are nondimensionalized to reduce the number of operating parameters from 12 to 4. The artificial neural network (ANN) is used to develop a correlation between nondimensionalized maximum temperature and the four nondimensional operating parameters. The ANN prediction has obtained a mean squared error (MSE) loss of the order of 10−6 and R2 value equal to 1 on the validation and test datasets. The temperature surface plots of the cold plate have been obtained for multiple channel configurations. The present study helps in reducing the overall computational time (59.13 s for 1296 simulations) and provides a generalized ANN-based correlation to predict the maximum temperature, which is vital to operate the battery under safe temperature limits.

References

1.
Ping
,
P.
,
Zhang
,
Y.
,
Kong
,
D.
, and
Du
,
J.
,
2021
, “
Investigation on Battery Thermal Management System Combining Phase Changed Material and Liquid Cooling Considering Non-Uniform Heat Generation of Battery
,”
J. Energy Storage
,
36
, p.
102448
.
2.
Shet
,
V. V.
,
Ponangi
,
B. R.
, and
Jacob
,
K.
,
2020
, “
Design of a Thermal Management System for a Battery Pack in an Electric Vehicle Using Dymola
,”
Heat Transfer
,
49
(
5
), pp.
2686
2705
.
3.
Tomasic
,
B.
,
Wisniewski
,
D.
,
Schmier
,
R.
,
Steffen
,
T.
, and
Phillips
,
G.
,
2019
, “
Cold Plate Design, Fabrication, and Demonstration for High-Power Ka-Band Active Electronically Scanned Arrays
,”
IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting
,
Atlanta, GA
,
July 7–12
, pp.
35
36
.
4.
Panchal
,
S.
,
Khasow
,
R.
,
Dincer
,
I.
,
Agelin-Chaab
,
M.
,
Fraser
,
R.
, and
Fowler
,
M.
,
2017
, “
Thermal Design and Simulation of Mini-Channel Cold Plate for Water Cooled Large Sized Prismatic Lithium-Ion Battery
,”
Appl. Therm. Eng.
,
122
(
6
), pp.
80
90
.
5.
Deng
,
T.
,
Zhang
,
G.
,
Ran
,
Y.
, and
Liu
,
P.
,
2019
, “
Thermal Performance of Lithium Ion Battery Pack by Using Cold Plate
,”
Appl. Therm. Eng.
,
160
, p.
114088
.
6.
Deng
,
T.
,
Zhang
,
G.
, and
Ran
,
Y.
,
2018
, “
Study on Thermal Management of Rectangular Li-Ion Battery With Serpentine-Channel Cold Plate
,”
Int. J. Heat Mass Transfer
,
125
, pp.
143
152
.
7.
Siripurapu
,
K. C.
,
2017
, “
Thermal Management of High Power Multi Chip Module by Design Optimization of Segregated Serpentine Flow Cold Plate
,”
Ph.D. dissertation
,
University of Texas at Arlington
,
Arlington, TX
.
8.
Malazi
,
M. T.
,
Sensoy
,
S.
, and
Heperkan
,
H. A.
,
2018
, “
Numerical Investigation of Heat Transfer in a Cold Plate With Two Different Inlet Location
,”
Int. J. Electron., Mech. Mech. Eng.
,
8
(
1
), p.
1529
. http://hdl.handle.net/11547/2506
9.
Patil
,
M. S.
,
Seo
,
J.-H.
,
Kim
,
N.
, and
Lee
,
M.-Y.
,
2018
, “
Transient Numerical Investigation on Cold Plate Based Water Cooling System for Battery Module With Large Lithium-Ion Pouch Cells
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
455
(
1
), p.
012050
.
10.
Ramakrishnan
,
B.
,
Alkharabsheh
,
S.
,
Hadad
,
Y.
,
Sammakia
,
B.
,
Chiarot
,
P. R.
,
Seymour
,
M.
, and
Tipton
,
R.
,
2017
, “
Experimental Characterization of a Cold Plate Used in Warm Water Cooling of Data Centers
,”
33rd Thermal Measurement, Modeling & Management Symposium (SEMI-THERM)
,
San Jose, CA
,
Mar. 13–17
, IEEE, pp.
191
196
.
11.
Qian
,
S.
,
2019
, “
An Equivalent Analysis Method for Heat Transfer Analysis of Cold Plate
,”
IEEE International Conference on Computational Electromagnetics (ICCEM)
,
Shanghai, China
,
Mar. 20–22
, pp.
1
3
. http://dx./doi.org/10.1109/COMPEM.2019.8779208
12.
Kalkan
,
O.
,
Colak
,
A. B.
,
Celen
,
A.
,
Bakirci
,
K.
, and
Dalkilic
,
A. S.
,
2022
, “
Prediction of Experimental Thermal Performance of new Designed Cold Plate for Electric Vehicles’ Li-Ion Pouch-Type Battery With Artificial Neural Network
,”
J. Energy Storage
,
48
, p.
103981
.
13.
Amrut
,
S. R.
,
Sachin
,
B. M.
,
Rao
,
P. B.
, and
Seetharamu
,
K. N.
,
2021
, “
Steady-State Thermal Investigations on Cold Plate Using FEM
,”
Therm. Sci. Eng. Prog.
,
23
, p.
100905
.
14.
Lewis
,
R. W.
,
Nithiarasu
,
P.
, and
Seetharamu
,
K. N.
,
2004
,
Fundamentals of the Finite Element Method for Heat and Fluid Flow
,
John Wiley & Sons
,
Hoboken, NJ
.
15.
Segerlind
,
L. J.
,
1991
,
Applied Finite Element Analysis
,
John Wiley & Sons
,
Hoboken, NJ
.
16.
Beale
,
M. H.
,
Hagan
,
M. T.
, and
Demuth
,
H. B.
,
2010
,
Neural Network Toolbox User’s Guide
,
MathWorks
,
Natick, MA
.
You do not currently have access to this content.