Abstract

Additive manufacturing is now a promising option to obtain porous customized structures at relatively low scales. The capability to design structures with tunable heat transfer performance compared to conventional porous materials, such as open-cell foams, is very interesting to the user. In this study, we investigated heat conduction in a drilled-hollow-sphere architected foam, inspired by Triply-Periodic Minimal Surfaces (TPMS) and foam structures, generated using perforated spherical hollow shells connected with cylindrical binders. Temperature fields and heat fluxes in the foam were predicted numerically, and the effective thermal conductivity of the foam was calculated for different sets of the binder angle, the shell thickness, and the perforation radius. The dependence of the foam porosity on the binder angle and perforation radius was also pointed out. Predictions were validated by comparing them with data available from the literature. Results showed that varying the characteristics of the investigated drilled-hollow-sphere architected foam, its predicted effective thermal conductivity can be adjusted by more than one order of magnitude larger or smaller than that of conventional foams, making architected foams promising enhancers of their heat transfer performance. Finally, new dimensionless correlations among the effective thermal conductivity and some significant morphological parameters of the foam were derived and presented for practical use.

References

1.
Gibson
,
L. J.
,
2013
, “
Cellular Solids
,”
MRS Bull.
,
28
(
4
), pp.
270
274
.
2.
Stovall
,
T. K.
,
2012
, “Closed Cell Foam Insulation: A Review of Long Term Thermal Performance Research,”
Oak Ridge National Laboratory
,
Oak Ridge, TN
.
3.
Sanders
,
W. S.
, and
Gibson
,
L. J.
,
2003
, “
Mechanics of Hollow Sphere Foams
,”
Mater. Sci. Eng. A
,
347
(
1–2
), pp.
70
85
.
4.
Greer
,
J.
, and
Deshpande
,
V.
,
2019
, “
Three-Dimensional Architected Materials and Structures: Design, Fabrication, and Mechanical Behavior
,”
MRS Bull.
,
44
(
10
), pp.
750
757
.
5.
Ashby
,
M. F.
, and
Bréchet
,
Y. J. M.
,
2003
, “
Designing Hybrid Materials
,”
Acta Mater.
,
51
(
19
), pp.
5801
5821
.
6.
Mirabolghasemi
,
A.
,
Akbarzadeh
,
A. H.
,
Rodrigue
,
D.
, and
Therriault
,
D.
,
2019
, “
Thermal Conductivity of Architected Cellular Metamaterials
,”
Acta Mater.
,
174
, pp.
61
80
.
7.
Kapfer
,
S. C.
,
Hyde
,
S. T.
,
Mecke
,
K.
,
Arns
,
C. H.
, and
Schröder-Turk
,
G. E.
,
2011
, “
Minimal Surface Scaffold Designs for Tissue Engineering
,”
Biomaterials
,
32
(
29
), pp.
6875
6882
.
8.
Torquato
,
S.
, and
Donev
,
A.
,
2010
, “
Minimal Surfaces and Multifunctionality
,”
Proc. R. Soc. London, Ser. A
,
460
(
2047
), pp.
1849
1856
.
9.
Torquato
,
S.
,
Hyun
,
S.
, and
Donev
,
A.
, “
Multifunctional Composites: Optimizing Microstructures for Simultaneous Transport of Heat and Electricity
,”
Phys. Rev. Lett.
,
89
(
26
), p.
266601
.
10.
Lord
,
E. A.
, and
Mackay
,
A. L.
,
2003
, “
Periodic Minimal Surfaces of Cubic Symmetry
,”
Curr. Sci.
,
85
(
3
), pp.
346
362
.
11.
Fischer
,
W.
, and
Koch
,
E.
,
1996
, “
Spanning Minimal Surfaces
,”
Philos. Trans. Math., Phys. Eng. Sci.
,
354
(
7515
), pp.
2105
2142
.
12.
Mickel
,
W.
,
Schröder-Turk
,
G. E.
, and
Mecke
,
K.
,
2012
, “
Tensorial Minkowski Functionals of Triply Periodic Minimal Surfaces
,”
Interface Focus
,
2
(
5
), pp.
623
633
.
13.
Larsson
,
M.
,
Larsson
,
K.
,
Andersson
,
S.
,
Kakhar
,
J.
,
Nylander
,
T.
,
Ninham
,
B.
, and
Wollmer
,
P.
,
1999
, “
The Alveolar Surface Structure: Transformation From a Liposome-Like Dispersion Into a Tetragonal Clp Bilayer Phase
,”
J. Dispersion Sci. Technol.
,
20
(
1–2
), pp.
1
12
.
14.
Nissen
,
H. U.
,
1969
, “
Crystal Orientation and Plate Structure in Echinoid Skeletal Units
,”
Science
,
166
(
3909
), pp.
1150
1152
.
15.
Abueidda
,
D. W.
,
Dalaq
,
A. S.
,
Abu Al-Rub
,
R. K.
, and
Jasiuk
,
I.
,
2015
, “
Micromechanical Finite Element Predictions of a Reduced Coefficient of Thermal Expansion for 3D Periodic Architectured Interpenetrating Phase Composites
,”
Compos. Struct.
,
133
, pp.
85
97
.
16.
Abueidda
,
D. W.
,
Abu Al-Rub
,
R. K.
,
Dalaq
,
A. S.
,
Lee
,
D.-W.
,
Khan
,
K. A.
, and
Jasiuk
,
I.
,
2016
, “
Effective Conductivities and Elastic Moduli of Novel Foams With Triply Periodic Minimal Surfaces
,”
Mech. Mater.
,
95
, pp.
102
115
.
17.
Li
,
W.
,
Yu
,
G.
, and
Yu
,
Z.
,
2020
, “
Bioinspired Heat Exchangers Based on Triply Periodic Minimal Surfaces for Supercritical CO2 Cycles
,”
Appl. Therm. Eng.
,
179
, p.
115686
.
18.
Cheng
,
Z.
,
Xu
,
R.
, and
Jiang
,
P. X.
,
2021
, “
Morphology, Flow and Heat Transfer in Triply Periodic Minimal Surface Based Porous Structures
,”
Int. J. Heat Mass Transfer
,
170
, p.
120902
.
19.
Qureshi
,
Z. A.
,
Al-Omari
,
S. A. B.
,
Elnajjar
,
E.
,
Al-Ketan
,
O.
, and
Al-Rub
,
R. A.
,
2021
, “
Heat Transfer Performance of a Finned Metal Foam-Phase Change Material (FMF-PCM) System Incorporating Triply Periodic Minimal Surfaces (TPMS)
,”
Int. Commun. Heat Mass Transfer
,
170
, p.
121001
.
20.
Qureshi
,
Z. A.
,
Al-Omari
,
S. A. B.
,
Elnajjar
,
E.
,
Al-Ketan
,
O.
, and
Al-Rub
,
R. A.
,
2021
, “
Using Triply Periodic Minimal Surfaces (TPMS)-Based Metal Foams Structures as Skeleton for Metal-Foam-PCM Composites for Thermal Energy Storage and Energy Management Applications
,”
Int. Commun. Heat Mass Transfer
,
124
, p.
105265
.
21.
Wang
,
F.
,
Jiang
,
H.
,
Chen
,
Y.
, and
Li
,
X.
,
2021
, “
Predicting Thermal and Mechanical Performance of Stochastic and Architected Foams
,”
Int. J. Heat Mass Transfer
,
171
, p.
121139
.
22.
Jiang
,
H.
,
Hannah
,
Z.
,
Zhennan
,
Z.
,
Han
,
M.
,
Chronopoulos
,
D.
, and
Chen
,
Y.
,
2020
, “
Mechanical Properties of 3D Printed Architected Polymer Foams Under Large Deformation
,”
Mater. Des.
,
194
, p.
108946
.
23.
McNeel
,
R.
and Associates,
2010
,
Rhinoceros 3D, Version 6.0
,
Seattle, WA
.
24.
Boomsma
,
K.
, and
Poulikakos
,
D.
,
2001
, “
On the Effective Thermal Conductivity of a Three-Dimensionally Structured Fluid-Saturated Metal Foam
,”
Int. J. Heat Mass Transfer
,
44
(
4
), pp.
827
836
.
25.
Mendes
,
M. A. A.
,
Ray
,
S.
, and
Trimis
,
D.
,
2013
, “
A Simple and Efficient Method for the Evaluation of Effective Thermal Conductivity of Open-Cell Foam-Like Structures
,”
Int. J. Heat Mass Transfer
,
66
, pp.
412
422
.
26.
Iasiello
,
M.
,
Bianco
,
N.
,
Chiu
,
W. K. S.
, and
Naso
,
V.
,
2021
, “
The Effects of Variable Porosity and Cell Size on the Thermal Performance of Functionally-Graded Foams
,”
Int. J. Therm. Sci.
,
160
, p.
106696
.
27.
Catchpole-Smith
,
S.
,
Sélo
,
R. R. J.
,
Davis
,
A. W.
,
Ashcroft
,
I. A.
, and
Clare
,
C. J. A.
,
2019
, “
Thermal Conductivity of TPMS Lattice Structures Manufactured via Laser Powder bed Fusion
,”
Addit. Manuf.
,
30
, p.
100846
.
28.
Zhao
,
C. Y.
,
Lu
,
T. J.
, and
Hodson
,
H. P.
,
2014
, “
Thermal Radiation in Ultralight Metal Foams With Open Cells
,”
Int. J. Heat Mass Transfer
,
47
(
14–16
), pp.
2927
2939
.
29.
Zhao
,
C. Y.
,
Lu
,
T. J.
, and
Hodson
,
H. P.
,
2005
, “
Natural Convection in Metal Foams With Open Cells
,”
Int. J. Heat Mass Transfer
,
48
(
12
), pp.
2452
2463
.
30.
Lemlich
,
R.
,
1978
, “
A Theory for the Limiting Conductivity of Polyhedral Foam at Low Density
,”
J. Colloid Interface Sci.
,
64
(
1
), pp.
107
110
.
31.
Bhattacharya
,
A.
,
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
,
2002
, “
Thermophysical Properties of High Porosity Metal Foams
,”
Int. J. Heat Mass Transfer
,
45
(
5
), pp.
1017
1031
.
32.
Bianchi
,
E.
,
Heidig
,
T.
,
Visconti
,
C. G.
,
Groppi
,
G.
,
Freund
,
H.
, and
Tronconi
,
E.
,
2012
, “
An Appraisal of the Heat Transfer Properties of Metallic Open-Cell Foams for Strongly Exo-/Endothermic Catalytic Processes in Tubular Reactors
,”
Chem. Eng. J.
,
198
(
2012
), pp.
512
528
.
33.
Paek
,
J. W.
,
Kang
,
B. H.
,
Kim
,
S. Y.
, and
Hyun
,
J. M.
,
2000
, “
Effective Thermal Conductivity and Permeability of Aluminum Foam Materials
,”
Int. J. Thermophys.
,
21
(
2
), pp.
453
464
.
34.
Sadeghi
,
E.
,
Hsieh
,
S.
, and
Bahrami
,
M.
,
2011
, “
Thermal Conductivity and Contact Resistance of Metal Foams
,”
J. Phys. D: Appl. Phys.
,
44
(
12
), p.
125406
.
35.
Yao
,
Y.
,
Wu
,
H.
, and
Liu
,
Z.
,
2015
, “
A New Prediction Model for the Effective Thermal Conductivity of High Porosity Open-Cell Metal Foams
,”
Int. J. Therm. Sci.
,
97
, pp.
56
67
.
36.
Iasiello
,
M.
,
Bianco
,
N.
,
Chiu
,
W. K. S.
, and
Naso
,
V.
,
2019
, “
Thermal Conduction in Open-Cell Metal Foams: Anisotropy and Representative Volume Element
,”
Int. J. Therm. Sci.
,
137
, pp.
399
409
.
37.
Baillis
,
D.
,
Raynaud
,
M.
, and
Sacadura
,
J. F.
,
1999
, “
Spectral Radiative Properties of Open-Cell Foam Insulation
,”
J. Thermophys. Heat Transfer
,
13
(
3
), pp.
292
298
.
38.
Gong
,
P.
,
Wang
,
G.
,
Tran
,
M.-P.
,
Buahom
,
P.
,
Zhai
,
S.
,
Li
,
G.
, and
Park
,
C. B.
,
2017
, “
Advanced Bimodal Polystyrene/Multi-walled Carbon Nanotube Nanocomposite Foams for Thermal Insulation
,”
Carbon
,
120
, pp.
1
10
.
39.
Dai
,
Z.
,
Nawaz
,
K.
,
Park
,
Y. G.
,
Bock
,
J.
, and
Jacobi
,
A. M.
,
2010
, “
Correcting and Extending the Boomsma–Poulikakos Effective Thermal Conductivity Model for Three-Dimensional, Fluid-Saturated Metal Foams
,”
Int. Commun. Heat Mass Transfer
,
37
(
6
), pp.
575
580
.
40.
Singh
,
R.
, and
Kasana
,
H. S.
,
2004
, “
Computational Aspects of Effective Thermal Conductivity of Highly Porous Metal Foams
,”
Appl. Therm. Eng.
,
24
(
13
), pp.
1841
1849
.
41.
Yang
,
X. H.
,
Bai
,
J. X.
,
Yan
,
H. B.
,
Kuang
,
J. J.
,
Lu
,
T. J.
, and
Kim
,
T.
,
2014
, “
An Analytical Unit Cell Model for the Effective Thermal Conductivity of High Porosity Open-Cell Metal Foams
,”
Transp. Porous Media
,
102
(
3
), pp.
403
426
.
You do not currently have access to this content.