Abstract

Film cooling was measured on the endwall of a five-vane annular cascade in a blowdown wind tunnel at an exit Mach number of 0.9. The adiabatic film cooling effectiveness was calculated from the partial pressure of oxygen measured with binary pressure-sensitive paint (BPSP). Cylindrical film cooling holes were located in the upstream and passage regions with the coolant-to-mainstream mass flow ratio (MFR) independently varied for each region. One row was located upstream of the vanes and supplied by an upstream plenum. Two rows were located in the passage between two vanes and supplied by a downstream plenum. Three total MFRs were investigated: 1%, 1.5%, and 2%. For a given total MFR, four combinations of upstream and downstream MFRs were compared to an even split of coolant. Coolant-to-mainstream density ratios (DRs) of 1.0 and 2.0 were investigated. The most efficient use of coolant hinged on balancing the downstream MFR for the second row due to the endwall pressure gradient preventing coolant from exiting the holes or a high jet velocity causing liftoff. For this row, selecting the optimum MFR increased the area-averaged film cooling effectiveness by up to 200% with a reduction in row 1 of less than 25%. At high downstream MFRs, increasing the density ratio delayed liftoff and increased film cooling effectiveness in row 2 by 65%. However, at low MFRs, increasing the density ratio reduced film cooling effectiveness in row 2 by 60%.

References

1.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S.
,
2012
,
Gas Turbine Heat Transfer and Cooling Technology
,
Taylor & Francis
,
Boca Raton, FL
.
2.
Wang
,
H. P.
,
Olson
,
S. J.
,
Goldstein
,
R. J.
, and
Eckert
,
E. R.
,
1997
, “
Flow Visualization in a Linear Turbine Cascade of High Performance Turbine Blades
,”
ASME J. Turbomach.
,
119
(
1
), pp.
1
8
.
3.
Chyu
,
M. K.
,
2001
, “
Heat Transfer Near Turbine Nozzle Endwall
,”
Ann. N. Y. Acad. Sci.
,
934
(
1
), pp.
27
36
.
4.
Simon
,
T. W.
, and
Piggush
,
J. D.
,
2006
, “
Turbine Endwall Aerodynamics and Heat Transfer
,”
AIAA J. Propul. Power
,
22
(
2
), pp.
301
312
.
5.
Wright
,
L. M.
,
Malak
,
M. F.
,
Crites
,
D. C.
,
Morris
,
M. C.
,
Yelavkar
,
V.
, and
Bilwani
,
R.
,
2014
, “
Review of Platform Cooling Technology for High Pressure Turbine Blades
,”
Proceedings of the ASME Turbo Expo
,
Dusseldorf, Germany
,
June 16–20
, Vol.
5B
, pp.
1
12
.
6.
Barigozzi
,
G.
,
Benzoni
,
G.
,
Franchini
,
G.
, and
Perdichizzi
,
A.
,
2006
, “
Fan-Shaped Hole Effects on the Aero-Thermal Performance of a Film-Cooled Endwall
,”
ASME J. Turbomach.
,
128
(
1
), pp.
43
52
.
7.
Wright
,
L. M.
,
Gao
,
Z.
,
Yang
,
H.
, and
Han
,
J. C.
,
2008
, “
Film Cooling Effectiveness Distribution on a Gas Turbine Blade Platform With Inclined Slot Leakage and Discrete Film Hole Flows
,”
ASME J. Heat Transfer
,
130
(
7
), pp.
1
11
.
8.
Ligrani
,
P. M.
,
Saumweber
,
C.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2001
, “
Shock Wave-Film Cooling Interactions in Transonic Flows
,”
ASME J. Turbomach.
,
123
(
4
), pp.
788
797
.
9.
Liu
,
K.
,
Narzary
,
D. P.
,
Han
,
J. C.
,
Mirzamoghadam
,
A. V.
, and
Riahi
,
A.
,
2011
, “
Influence of Shock Wave on Turbine Vane Suction Side Film Cooling With Compound-Angle Shaped Holes
,”
Proceedings of ASME Turbo Expo
,
Vancouver, Canada
,
June 6–10
, pp.
1
11
.
10.
Yang
,
S. F.
,
Han
,
J. C.
,
MirzaMoghadam
,
A.
, and
Riahi
,
A.
,
2015
, “
Film Cooling Effectiveness of Transonic Turbine Vane Suction Side With Compound-Angle Shaped Hole Configuration
,”
Proceedings of the ASME Turbo Expo
,
Montreal, Canada
,
June 15–19
, pp.
1
12
.
11.
Shiau
,
C. C.
,
Chowdhury
,
N. H.
,
Yang
,
S. F.
,
Han
,
J. C.
,
MirzaMoghadam
,
A.
, and
Riahi
,
A.
,
2016
, “
Heat Transfer Coefficients and Film Cooling Effectiveness of Transonic Turbine Vane Suction Surface Using TSP Technique
,”
Proceedings of ASME Turbo Expo
,
Seoul, South Korea
,
June 13–16
, pp.
1
13
.
12.
Shiau
,
C. C.
,
Chowdhury
,
N. H.
,
Han
,
J. C.
,
Mirzamoghadam
,
A. V.
, and
Riahi
,
A.
,
2018
, “
Transonic Turbine-Vane Film Cooling With Showerhead Effect Using Pressure-Sensitive Paint Measurement Technique
,”
AIAA J. Thermophys. Heat Transfer
,
32
(
3
), pp.
637
647
.
13.
Burdett
,
T. A.
,
Ullah
,
I.
,
Wright
,
L. M.
,
Han
,
J. C.
,
McClintic
,
J. W.
,
Crites
,
D. C.
, and
Riahi
,
A.
,
2022
, “
Upstream and Passage Endwall Film Cooling of a Transonic Turbine Vane
,”
AIAA J. Thermophys. Heat Transfer
, pp.
1
10
.
14.
Zeng
,
L.
,
Chen
,
P.
,
Li
,
X.
,
Ren
,
J.
, and
Jiang
,
H.
,
2018
, “
Influence of Simplifications of Blade in Gas Turbine on Film Cooling Performance
,”
Appl. Therm. Eng.
,
128
, pp.
877
886
.
15.
Takeishi
,
K.
,
Matsuura
,
M.
,
Aoki
,
S.
, and
Sato
,
T.
,
1990
, “
An Experimental Study of Heat Transfer and Film Cooling on Low Aspect Ratio Turbine Nozzles
,”
ASME J. Turbomach.
,
112
(
3
), pp.
488
496
.
16.
Salvadori
,
S.
,
Ottanelli
,
L.
,
Jonsson
,
M.
,
Ott
,
P.
, and
Martelli
,
F.
,
2012
, “
Investigation of High-Pressure Turbine Endwall Film-Cooling Performance Under Realistic Inlet Conditions
,”
AIAA J. Propul. Power
,
28
(
4
), pp.
799
810
.
17.
Chen
,
A. F.
,
Shiau
,
C. C.
, and
Han
,
J. C.
,
2017
, “
Turbine Blade Platform Film Cooling With Fan-Shaped Holes Under Simulated Swirl Purge Flow and Slashface Leakage Conditions
,”
ASME J. Turbomach.
,
140
(
1
), pp.
1
11
.
18.
Shiau
,
C. C.
,
Chen
,
A. F.
,
Han
,
J. C.
,
Azad
,
S.
, and
Lee
,
C. P.
,
2018
, “
Film Cooling Effectiveness Comparison on Full-Scale Turbine Vane Endwalls Using Pressure-Sensitive Paint Technique
,”
ASME J. Turbomach.
,
140
(
2
), pp.
1
12
.
19.
Shiau
,
C. C.
,
Sahin
,
I.
,
Ullah
,
I.
,
Han
,
J. C.
,
Mirzamoghadam
,
A. V.
,
Riahi
,
A.
, and
Stimpson
,
C.
,
2020
, “
Transonic Turbine Vane Endwall Film Cooling Using the Pressure-Sensitive Paint Measurement Technique
,”
ASME J. Turbomach.
,
142
(
8
), pp.
1
10
.
20.
Salinas
,
D. A.
,
Ullah
,
I.
,
Wright
,
L. M.
,
Han
,
J. C.
,
McClintic
,
J. W.
,
Crites
,
D. C.
, and
Riahi
,
A.
,
2021
, “
Upstream Film Cooling on the Contoured Endwall of a Transonic Turbine Vane in an Annular Cascade
,”
ASME J. Turbomach.
,
143
(
6
), pp.
1
10
.
21.
Baines
,
W. D.
, and
Peterson
,
E. G.
,
1951
, “
An Investigation of Flow Through Screens
,”
Trans. ASME
,
73
(
5
), pp.
467
480
.
22.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1998
, “
Discharge Coefficient Measurements of Film-Cooling Holes With Expanded Exits
,”
ASME J. Turbomach.
,
120
(
3
), pp.
557
563
.
23.
Juliano
,
T. J.
,
Peng
,
D.
,
Jensen
,
C.
,
Gregory
,
J. W.
,
Liu
,
T.
,
Montefort
,
J.
,
Palluconi
,
S.
,
Crafton
,
J.
, and
Fonov
,
S.
,
2011
, “
PSP Measurements on an Oscillating NACA 0012 Airfoil in Compressible Flow
,”
41st AIAA Fluid Dynamics Conference and Exhibit
,
Honolulu, HI
,
June 27–30
. pp.
1
15
.
24.
Abdeh
,
H.
,
Miranda
,
M.
,
Rouina
,
S.
, and
Barigozzi
,
G.
,
2017
, “
Development of PSP Technique for Vane Film Cooling Investigations
,”
Energy Procedia
,
126
, pp.
802
809
.
25.
Barigozzi
,
G.
,
Mucignat
,
C.
,
Abdeh
,
H.
,
Scandella
,
D.
, and
Dolci
,
G.
,
2018
, “
Assessment of Binary PSP Technique for Film Cooling Effectiveness Measurement on Nozzle Vane Cascade With Cutback Trailing Edge
,”
Exp. Therm. Fluid. Sci.
,
97
(
Feb.
), pp.
431
443
.
26.
Goldstein
,
R. J.
,
1971
, “
Film Cooling
,”
Adv. Heat Transfer
,
7
(
C
), pp.
321
379
.
27.
McNamara
,
L. J.
,
Fischer
,
J. P.
,
Rutledge
,
J. L.
, and
Polanka
,
M. D.
,
2021
, “
Scaling Considerations for Thermal and Pressure-Sensitive Paint Methods Used to Determine Adiabatic Effectiveness
,”
ASME J. Turbomach.
,
143
(
1
), p.
011004
.
28.
Charbonnier
,
D.
,
Ott
,
P.
,
Jonsson
,
M.
,
Cottier
,
F.
, and
Köbke
,
T.
,
2009
, “
Experimental and Numerical Study of the Thermal Performance of a Film Cooled Turbine Platform
,”
Proceedings of the ASME Turbo Expo
,
Orlando, FL
,
June 8–12
, Vol.
3
, Power for Land, pp.
1027
1038
.
29.
Han
,
J. C.
, and
Rallabandi
,
A. P.
,
2010
, “
Turbine Blade Film Cooling Using PSP Technique
,”
Front. Heat Mass Transf.
,
1
(
1
), pp.
1
21
.
30.
Kline
,
S. J.
, and
McClintock
,
A. F.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mechan. Eng.
,
75
(
1
), pp.
3
8
.
31.
Brown
,
K. K.
,
Coleman
,
H. W.
, and
Glenn Steele
,
W.
,
1998
, “
A Methodology for Determining Experimental Uncertainties in Regressions
,”
ASME J. Fluids Eng.
,
120
(
3
), pp.
445
456
.
You do not currently have access to this content.