Abstract

In this study, a series of time-averaged tomographic particle image velocimetry (TPIV) measurements are completed for simple angle, cylindrical film cooling holes on a flat plate with an inclination angle of 30 deg and a diameter of 4 mm. The flat plate is installed in a low-speed wind tunnel with a mainstream turbulence intensity of Tu=8% and an average velocity of 21.6 m/s. The blowing ratios of the jet range from M = 0.3 to M = 1.5, and the density ratio of the jet is fixed at DR = 1. The Reynolds number of the cooling jet varies from 1700 to 8400. The repeatability and accuracy of the tomographic particle imaging velocimetry (TPIV) measurements are compared against the results obtained by other flowfield measurement techniques. The results of the TPIV measurements are presented in velocity and vorticity iso-surface distributions in 3D, as well as 2D planar slices of velocity, vorticity, turbulence intensity, and Reynolds Stress distributions within the measurement volume. The characteristics of the flowfield are coupled with the detailed film cooling effectiveness distribution obtained using the pressure-sensitive paint (PSP) technique. An inverse relation among volumetric turbulence accumulation (TA) and surface film effectiveness, η, can be correlated.

References

1.
Han
,
J.-C.
,
Dutta
,
S.
, and
Ekkad
,
S.
,
2013
,
Gas Turbine Heat Transfer and Cooling Technology
, 2nd ed.,
CRC Press
,
Boca Raton, FL
, pp.
226
267
.
2.
Pietrzyk
,
J. R.
,
Bogard
,
D. G.
, and
Crawford
,
M. E.
,
1989
, “
Hydrodynamic Measurements of Jets in Crossflow for Gas Turbine Film Cooling Applications
,”
ASME J. Turbomach.
,
111
(
2
), pp.
139
145
.
3.
Thole
,
K.
,
Sinha
,
A.
,
Bogard
,
D.
, and
Crawford
,
M.
,
1990
, “
Mean Temperature Measurements of Jets with a Crossflow for Gas Turbine Film Cooling Application
,”
Proceedings of the 3rd International Symposium on Transport Phenomena and Dynamics of Rotating Machinery (ISROMAC-3)
,
Honolulu, HI
,
Apr. 1–4
, pp.
69
85
.
4.
Fric
,
T. F.
, and
Roshko
,
A.
,
1994
, “
Vortical Structure in the Wake of a Transverse Jet
,”
J. Fluid Mech.
,
279
, pp.
1
47
.
5.
Burd
,
S. W.
,
Kaszeta
,
R. W.
, and
Simon
,
T. W.
,
1998
, “
Measurements in Film Cooling Flows: Hole L/D and Turbulence Intensity Effects
,”
ASME J. Turbomach.
,
120
(
4
), pp.
791
798
.
6.
Wright
,
L. M.
,
McClain
,
S. T.
, and
Clemenson
,
M. D.
,
2011
, “
PIV Investigation of the Effect of Freestream Turbulence Intensity on Film Cooling From Fanshaped Holes
,” pp.
493
507
.
7.
Wright
,
L. M.
,
McClain
,
S. T.
,
Brown
,
C. P.
, and
Harmon
,
W. V.
,
2013
, “
Assessment of a Double Hole Film Cooling Geometry Using S-PIV and PSP
,”
ASME Turbo Expo 2013: Turbine Technical Conference and Exposition
,
San Antonio, TX
,
June 3–7
, Vol. 55157, American Society of Mechanical Engineers, p. V03BT13A024.
8.
Watson
,
T. B.
,
Nahang-Toudeshki
,
S.
,
Wright
,
L. M.
,
Crites
,
D. C.
,
Morris
,
M. C.
, and
Riahi
,
A.
,
2016
, “
Application of S-PIV for Investigation of Round and Shaped Film Cooling Holes at High Density Ratios
,”
ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition. Volume 5C: Heat Transfer.2019: Turbomachinery Technical Conference and Exposition
,
Seoul, South Korea
,
June 13–17
, Vol. 49804, American Society of Mechanical Engineers, p. V05CT19A008.
9.
Vinton
,
K. R.
, and
Wright
,
L. M.
,
2017
, “
Effect of Flow Acceleration on Mainstream-to-Coolant Flow Interaction for Round and Shaped Film Cooling Holes
,”
ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
,
Charlotte, NC
,
June 26–30
, Vol. 50893, American Society of Mechanical Engineers, p. V05CT19A013.
10.
Eberly
,
M. K.
, and
Thole
,
K. A.
,
2014
, “
Time-Resolved Film-Cooling Flows at High and Low Density Ratios
,”
ASME J. Turbomach.
,
136
(
6
), p.
061003
.
11.
Johnson
,
B.
,
Tian
,
W.
,
Zhang
,
K.
, and
Hu
,
H.
,
2014
, “
An Experimental Study of Density Ratio Effects on the Film Cooling Injection From Discrete Holes by Using PIV and PSP Techniques
,”
Int. J. Heat Mass Transfer
,
76
, pp.
337
349
.
12.
Schroeder
,
R. P.
, and
Thole
,
K. A.
,
2016
, “
Effect of High Freestream Turbulence on Flowfields of Shaped Film Cooling Holes
,”
ASME J. Turbomach.
,
138
(
9
), p.
091001
.
13.
Stratton
,
Z. T.
, and
Shih
,
T. I. P.
,
2018
, “
Effects of Density and Blowing Ratios on the Turbulent Structure and Effectiveness of Film Cooling
,”
ASME J. Turbomach.
,
140
(
10
), p.
101007
.
14.
Brakmann
,
R. G.
,
Schöffler
,
R.
,
Kocian
,
F.
,
Schroll
,
M.
,
Willert
,
C.
,
Müller
,
M.
, and
Kügeler
,
E.
,
2020
, “
Quantitative Flow Imaging of Film Cooling Jets in a Cross-Flow Using Particle Image Velocimetry and Computational Fluid Dynamics
,”
ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition
,
Virtual, Online
,
Sept. 21–25
, Vol. 84171, American Society of Mechanical Engineers, p. V07BT12A069.
15.
Elkins
,
C. J.
,
Markl
,
M.
,
Pelc
,
N.
, and
Eaton
,
J. K.
,
2003
, “
4D Magnetic Resonance Velocimetry for Mean Velocity Measurements in Complex Turbulent Flows
,”
Exp. Fluids
,
34
(
4
), pp.
494
503
.
16.
Coletti
,
F.
,
Benson
,
M. J.
,
Ling
,
J.
,
Elkins
,
C. J.
, and
Eaton
,
J. K.
,
2013
, “
Turbulent Transport in an Inclined Jet in Crossflow
,”
Int. J. Heat Fluid Flow
,
43
, pp.
149
160
.
17.
Issakhanian
,
E.
,
Elkins
,
C. J.
, and
Eaton
,
J. K.
,
2015
, “
Film Cooling Effectiveness Improvements Using a Nondiffusing Oval Hole
,”
ASME J. Turbomach.
,
138
(
4
), p.
041004
.
18.
Issakhanian
,
E.
,
Elkins
,
C. J.
, and
Eaton
,
J. K.
,
2017
, “
Pitfalls of Fan-Shaped Hole Design: Insights From Experimental Measurement of In-Hole Flow Through MRV
,”
ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
,
Charlotte, NC
,
June 26–30
, Vol. 50893, American Society of Mechanical Engineers, p. V05CT19A008.
19.
Ma
,
H.
,
Liu
,
Y.
,
Lai
,
Y.
,
Ouyang
,
H.
,
Ning
,
J.
,
Jiang
,
X.
, and
Xu
,
Q.
,
2023
, “
Magnetic Resonance Velocimetry of a Turbine Blade With Engine-Representative Internal and Film Cooling Structures
,”
ASME J. Turbomach.
,
145
(
1
), p.
011004
.
20.
Figueiredo
,
A. J. C.
,
Jones
,
R.
,
Pountney
,
O. J.
,
Scobie
,
J. A.
,
Lock
,
G. D.
,
Sangan
,
C. M.
, and
Cleaver
,
D. J.
,
2019
, “
Volumetric Velocimetry Measurements of Film Cooling Jets
,”
ASME J. Eng. Gas Turbines Power
,
141
(
3
), p.
031021
.
21.
David
,
L.
,
Fraticelli
,
R.
,
Wieneke
,
B.
, and
Thomas
,
L.
,
2007
, “
Investigation of Three-Dimensional Vortex Structures in Crossflow by Time-Resolved Tomographic PIV
,”
7th International Symposium on PIV
,
Rome, Italy
,
Sept. 11–14
, pp.
11
14
.
22.
Wang
,
C.
,
Gao
,
Q.
,
Wang
,
J.
,
Wang
,
B.
, and
Pan
,
C.
,
2019
, “
Experimental Study on Dominant Vortex Structures in Near-Wall Region of Turbulent Boundary Layer Based on Tomographic Particle Image Velocimetry
,”
J. Fluid Mech.
,
874
, pp.
426
454
.
23.
Nair
,
V.
,
Sirignano
,
M. D.
,
Schmidheiser
,
S.
,
Dillon
,
L.
,
Fugger
,
C. A.
,
Yi
,
T.
, and
Jiang
,
N.
,
2020
, “
Tomographic PIV Characterization of the Near Field Topology of the Reacting Jet in Crossflow
,”
AIAA Scitech 2020 Forum
,
Orlando, FL
,
Jan. 6–10
, p.
1420
.
24.
Scharnowski
,
S.
,
Bross
,
M.
, and
Kähler
,
C. J.
,
2019
, “
Accurate Turbulence Level Estimations Using PIV/PTV
,”
Exp. Fluids
,
60
(
1
), pp.
1
12
.
25.
Scarano
,
F.
,
2012
, “
Tomographic PIV: Principles and Practice
,”
Meas. Sci. Technol.
,
24
(
1
), p.
012001
.
26.
Wang
,
H.
, and
Wright
,
L. M.
,
2021
, “
Effect of Inlet Geometry on Flat Plate, Film Cooling Effectiveness From Shaped Holes
,”
ASME 2021 International Mechanical Engineering Congress and Exposition
,
Virtual, Online
,
Nov. 1–5
, p. V011T11A060.
27.
Sciacchitano
,
A.
, and
Scarano
,
F.
,
2014
, “
Elimination of PIV Light Reflections via a Temporal High Pass Filter
,”
Meas. Sci. Technol.
,
25
(
8
), p.
084009
.
28.
LaVision GmbH
,
2020
,
FlowMaster Tomographic PIV, Product Manual for DaVis 10.1 software, Göttingen, Germany
.
29.
Novara
,
M.
,
Batenburg
,
K. J.
, and
Scarano
,
F.
,
2010
, “
Motion Tracking-Enhanced MART for Tomographic PIV
,”
Meas. Sci. Technol.
,
21
(
3
), p.
035401
.
30.
Kline
,
S. J.
,
1953
, “
Describing Uncertainty in Single Sample Experiments
,”
Mech. Eng.
,
75
, pp.
3
8
.
You do not currently have access to this content.