Abstract

The research on the flow and heat transfer of alkali metals is an important technical means to strengthen the heat transfer of the core. In this paper, the 15 cooling channels with different structures are established. Under Re = 2.85 × 104–2.17 × 105, several operating parameters, such as core inlet temperature (T = 350 K, 390 K, 450 K, 550 K, 850 K), fuel rod pitch ratio (P = 1.2, 1.4, 1.6, 1.8, 2.0), and channel shape (triangle and square) on the heat transfer performance are numerically simulated. At the same time, this work introduces an evaluation criterion, entransy dissipation, to measure the irreversibility of the heat transfer process. The results show that the triangular channel has a stronger heat transfer capacity than the square. And the increase of the rod diameter ratio is a positive means to enhance the heat transfer. Among the studied channels, Model “I” (triangle channel, P = 2.0) has the best heat transfer performance. The above results have some guiding value to realize core heat transfer enhancement by adjusting fuel rod arrangement.

References

1.
Tachibana
,
K.
,
Tachibana
,
S.
, and
Inoue
,
N.
,
2017
, “
From Outer Space to Earth—The Social Significance of Isolated and Confined Environment Research in Human Space Exploration
,”
Acta Astronaut.
,
140
, pp.
273
283
.
2.
Bennett
,
G.
,
2006
, “
Space Nuclear Power: Opening the Final Frontier
,”
Proceedings of the 4th International Energy Conversion Engineering Conference and Exhibit (IECEC)
,
San Diego, CA
,
June 26–29
, AIAA Paper No. 2006-4191.
3.
Abu-Khader
,
M. M.
,
2009
, “
Recent Advances in Nuclear Power: A Review
,”
Prog. Nucl. Energy
,
51
(
2
), pp.
225
235
.
4.
Stone
,
J. R.
,
1994
, “Alkali Metal Rankine Cycle Boiler Technology Challenges and Some Potential Solutions for Space Nuclear Power and Propulsion Applications,” NASA Report. No. NASA-TM-106593.
5.
Richard
,
T.
,
Lahey
,
J.
, and
Dhir
,
V.
,
2004
, “Research in Support of the Use of Rankine Cycle Energy Conversion Systems for Space Power and Propulsion,” NASA Report. No. NASA/CR-2004-213142.
6.
Lorenzin
,
N.
, and
Abanades
,
A.
,
2016
, “
A Review on the Application of Liquid Metals as Heat Transfer Fluid in Concentrated Solar Power Technologies
,”
Int. J. Hydrogen Energy
,
41
(
17
), pp.
6990
6995
.
7.
Ching-Jen
,
C.
, and
Chiou
,
J. S.
,
1981
, “
Laminar and Turbulent Heat Transfer in the Pipe Entrance Region for Liquid Metals
,”
Int. J. Heat Mass Transfer
,
24
(
7
), pp.
1179
1189
.
8.
Tian
,
Z.
,
Liu
,
X.
,
Wang
,
C.
,
Zhang
,
D.
,
Tian
,
W.
,
Qiu
,
S.
, and
Su
,
G. H.
,
2021
, “
Experimental Investigation on the Heat Transfer Performance of High-Temperature Potassium Heat Pipe for Nuclear Reactor
,”
Nucl. Eng. Des.
,
378
, p.
111182
.
9.
Yoder
,
G. L.
,
Carbajo
,
J. J.
,
Murphy
,
R. W.
, and
Qualls
,
A. L.
,
2005
, “
Potassium Rankine Cycle System Design Study for Space Nuclear Electric Propulsion
,”
Proceedings of the 3rd International Energy Conversion Engineering Conference
,
San Francisco, CA
,
Aug. 15–18
, AIAA Paper No. 2005-5637.
10.
Ewing
,
C. T.
,
Stone
,
J. P.
,
Spann
,
J. R.
, and
Miller
,
R. R.
,
1964
, “
High Temperature Properties of Sodium
,”
J. Chem. Eng. Data
,
11
(
4
), pp.
468
473
.
11.
Coe
,
H. H.
,
1965
,
Summary of Thermophysical Properties of Potassium
,
National Aeronautics and Space Administration
,
Washington, D.C
.
12.
Liu
,
X.
,
Hao
,
Z.
,
He
,
Y.
, and
Niu
,
F. L.
,
2022
, “
Thermodynamic properties of liquid alkali-metal coolants: from the perspective of molecular dynamicsynamics
,”
J. Nucl. Sci. Technol.
,
59
(
5
), pp.
590
596
.
13.
Jaeger
,
W.
,
2017
, “
Heat Transfer to Liquid Metals With Empirical Models for Turbulent Forced Convection in Various Geometries
,”
Nucl. Eng. Des.
,
319
(
8
), pp.
12
27
.
14.
Kirillov
,
P. L.
,
2018
, “
Heat-Exchange in One-Phase Liquid-Metal Flows: Databank (Temperature Distribution in Circular Pipes
,”
At. Energy
,
124
(
4
), pp.
238
243
.
15.
Pacio
,
J.
, and
Marocco
,
L.
,
2015
, “
Wetzel T. Review of Data and Correlations for Turbulent Forced Convective Heat Transfer of Liquid Metals in Pipes
,”
Heat Mass Transfer
,
51
(
2
), pp.
153
164
.
16.
Abramov
,
A. G.
,
Levchenya
,
A. M.
,
Smirnov
,
E. M.
, and
Smirnov
,
P. E.
,
2015
, “
Numerical Simulation of Liquid Metal Turbulent Heat Transfer From an Inline Tube Bundle in Cross-Flow
,”
St. Petersburg Polytechn. Univ. J.: Phys. Math.
,
1
(
4
), pp.
356
363
.
17.
Wu
,
Y.
,
Hou
,
Y.
,
Wang
,
L.
,
Luo
,
S.
,
Su
,
G. H.
,
Tian
,
W.
, and
Qiu
,
S.
,
2018
, “
Review on Heat Transfer and flow Characteristics of Liquid Sodium (1): Single-Phase
,”
Prog. Nucl. Energy
,
104
, pp.
306
316
.
18.
Hou
,
Y.
,
Wang
,
L.
,
Wang
,
M.
,
Zhang
,
K.
, and
Su
,
G. H.
,
2019
, “
Experimental Study of Liquid Sodium Flow and Heat Transfer Characteristics Along a Hexagonal 7-Rod Bundle
,”
Appl. Therm. Eng.
,
149
, pp.
578
587
.
19.
Tom
,
S.
, and
Raghupathy
,
S.
,
2021
, “
Numerical Simulation of Single-Phase Heat Transfer and Nucleate Boiling of Liquid Sodium in Narrow Annulus Channel Similar to That of SFR Fuel Subchannel
,”
Nucl. Eng. Des.
,
383
, p.
111425
.
20.
Vosteen
,
H. D.
, and
Schellschmidt
,
R.
,
2003
, “
Influence of Temperature on Thermal Conductivity, Thermal Capacity and Thermal Diffusivity for Different Types of Rock
,”
Phys. Chem. Earth Parts A/B/C
,
28
(
9–11
), pp.
499
509
.
21.
Borishanskii
,
V. M.
,
Gotovskii
,
M. A.
, and
Firsova
,
E. V.
,
1969
, “
Heat Transfer to Liquid Metals in Longitudinally Wetted Bundles of Rods
,”
Sov. Atom. Energy
,
27
(
6
), pp.
1347
1350
.
22.
Subbotin
,
V. I.
,
Ibragimov
,
M. K.
,
Ivanovsky
,
M. N.
,
Arnol"Dov
,
M. N.
, and
Nomofilov
,
E. V.
,
1961
, “
Turbulent Heat Transfer in a Flow of Liquid Metals
,”
Int. J. Heat Mass Transfer
,
4
, pp.
79
87
.
23.
Dwyer
,
O. E.
,
1966
, “
Recent Developments in Liquid-Metal Heat Transfer
,”
Atom. Energy Rev.
,
4
(
1
), pp.
619
642
.
24.
Mikityuk
,
K.
,
2009
, “
Heat Transfer to Liquid Metal: Review of Data and Correlations for Tube Bundles
,”
Nucl. Eng. Des.
,
239
(
4
), pp.
680
687
.
25.
Taler
,
D.
,
2016
, “
Heat Transfer in Turbulent Tube Flow of Liquid Metals
,”
Procedia Eng.
,
157
, pp.
148
157
.
26.
Subbotin
,
V. I.
,
Ibragimov
,
M. K.
,
Ivanovskii
,
M. N.
,
Arnol'bov
,
M. N.
, and
Nomofilov
,
E. V.
,
1962
, “
Heat-Transfer From the Turbulent Flow of Liquid Metals in Tubes
,”
Sov. J. Atom. Energy
,
11
(
2
), pp.
769
775
.
27.
He
,
S.
,
Wang
,
M.
,
Hou
,
Y.
,
Tian
,
W.
,
Qiu
,
S.
, and
Su
,
G. H.
,
2022
, “
Study on the Flow and Heat Transfer Characteristics of Liquid Sodium in a Hexagonal 7-Rod Bundle
,”
Nucl. Eng. Des.
,
393
, p.
111798
.
28.
Marušić-Paloka
,
E.
, and
Pažanin
,
I.
,
2020
, “
Effects of Boundary Roughness and Inertia on the Fluid Flow Through a Corrugated Pipe and the Formula for the Darcy–Weisbach Friction Coefficient
,”
Int. J. Eng. Sci.
,
152
, p.
103293
.
29.
Zhang
,
Y.
,
Gao
,
P.
,
Kinnison
,
W. W.
,
Ji
,
P.
,
Zhou
,
J.
, and
Lin
,
Y.
,
2019
, “
Analysis of Natural Circulation Frictional Resistance Characteristics in Rod Bundle Channel
,”
Ann. Nucl. Energy
,
127
, pp.
79
86
.
30.
Trupp
,
A. C.
, and
Azad
,
R. S.
,
1975
, “
The Structure of Turbulent Flow in Triangular Array Rod Bundles
,”
Nucl. Eng. Des.
,
32
(
1
), pp.
47
84
.
31.
Wu
,
Y. W.
,
Li
,
X.
,
Yu
,
X.
,
Qiu
,
S. Z.
,
Su
,
G. H.
, and
Tian
,
W. X.
,
2013
, “
Subchannel Thermal-Hydraulic Analysis of the Fuel Assembly for Liquid Sodium Cooled Fast Reactor
,”
Prog. Nucl. Energy
,
68
, pp.
65
78
.
32.
Fei
,
C.
,
Huai
,
X.
,
Cai
,
J.
,
Li
,
X.
, and
Meng
,
R.
,
2013
, “
Investigation on the Applicability of Turbulent-Prandtl-Number Models for Liquid Lead-Bismuth Eutectic
,”
Nucl. Eng. Des.
,
257
, pp.
128
133
.
33.
Cheng
,
X.
, and
Tak
,
N.
,
2006
, “
Investigation on Turbulent Heat Transfer to Lead–Bismuth Eutectic Flows in Circular Tubes for Nuclear Applications
,”
Nucl. Eng. Des.
,
236
(
4
), pp.
385
393
.
34.
Mahmud
,
S.
, and
Fraser
,
R. A.
,
2002
, “
Thermodynamic Analysis of Flow and Heat Transfer Inside Channel With Two Parallel Plates
,”
Exergy Int. J.
,
2
(
3
), pp.
140
146
.
35.
Rastegardoost
,
M. M.
, and
Samadi
,
F.
,
2019
, “
Thermo-Fluid Simulation of the Gas Turbine Performance Based on the First Law of Thermodynamics
,”
Energy Equip. Syst.
,
7
(
1
), pp.
99
108
.
36.
Bejan
,
A.
,
1948
, “
Entropy Generation Through Heat and Fluid Flow
,”
ASME J. Appl. Mech.
,
50
(
2
), p.
475
.
37.
Mahmud
,
S.
, and
Fraser
,
R. A.
,
2003
, “
The Second Law Analysis in Fundamental Convective Heat Transfer Problems
,”
Int. J. Therm. Sci.
,
42
(
2
), pp.
177
186
.
38.
Bertola
,
V.
, and
Cafaro
,
E.
,
2008
, “
A Critical Analysis of the Minimum Entropy Production Theorem and Its Application to Heat and Fluid Flow
,”
Int. J. Heat Mass Transfer
,
51
(
7–8
), pp.
1907
1912
.
39.
Varol
,
Y.
,
Oztop
,
H. F.
, and
Koca
,
A.
,
2008
, “
Entropy Production due to Free Convection in Partially Heated Isosceles Triangular Enclosures
,”
Appl. Therm. Eng.
,
28
(
11–12
), pp.
1502
1513
.
40.
Liu
,
X. B.
,
Meng
,
J. A.
, and
Guo
,
Z. Y.
,
2009
, “
Entropy Generation Extremum and Entransy Dissipation Extremum for Heat Exchanger Optimization
,”
Chin. Sci. Bull.
,
54
(
6
), pp.
943
947
. CNKI:SUN:JXTW.0.2009-06-006
41.
Guo
,
Z. Y.
,
Liu
,
X. B.
,
Tao
,
W. Q.
, and
Shah
,
R. K.
,
2010
, “
Effectiveness–Thermal Resistance Method for Heat Exchanger Design and Analysis
,”
Int. J. Heat Mass Transfer
,
53
(
13–14
), pp.
2877
2884
.
42.
Guo
,
Z. Y.
,
Zhu
,
H. Y.
, and
Liang
,
X. G.
,
2007
, “
Entransy—A Physical Quantity Describing Heat Transfer Ability
,”
Int. J. Heat Mass Transfer
,
50
(
13–14
), pp.
2545
2556
.
43.
Cheng
,
X. G.
,
2004
, “
Entransy and Its Application in Heat Transfer Optimization
,”
Ph.D. dissertation
,
Tsinghua University
,
Beijing, China
.
44.
Cheng
,
X. G.
,
Li
,
Z. X.
, and
Guo
,
Z. Y.
,
2004
, “
Variational Principles in Heat Conduction
,”
J. Eng. Thermophys.
,
25
(
3
), pp.
457
459
.
45.
Lin
,
C.
,
Chen
,
Q.
,
Zhen
,
L.
, and
Guo
,
Z. Y.
,
2009
, “
Optimization for a Heat Exchanger Couple Based on the Minimum Thermal Resistance Principle
,”
Int. J. Heat Mass Transfer
,
52
(
21–22
), pp.
4778
4784
.
46.
Hu
,
G. J.
,
Cao
,
B. Y.
, and
Guo
,
Z. Y.
,
2011
, “
Entransy and Entropy Revisited
,”
Chin. Sci. Bull.
,
56
(
27
), pp.
2974
2977
.
47.
Guo
,
J. F.
,
Cheng
,
L.
, and
Xu
,
M. T.
,
2009
, “
Entransy Dissipation Number and Its Application to Heat Exchanger Performance Evaluation
,”
Chin. Sci. Bull.
,
54
(
15
), pp.
2708
2713
.
48.
Mills
,
A. F.
,
1995
,
Basic Heat and Mass Transfer
,
Irwin
,
Chicago
.
49.
Deeb
,
R.
,
2022
, “
Numerical Analysis of the Effect of Longitudinal and Transverse Pitch Ratio on the Flow and Heat Transfer of Staggered Drop-Shaped Tubes Bundle
,”
Int. J. Heat Mass Transfer
,
183
, p.
122123
.
You do not currently have access to this content.