Abstract

In this study, an attempt has been made to carry out a numerical investigation using water-based Al2O3 nanofluid, flowing through a circular tube under constant inlet temperature and constant heat flux conditions in the laminar flow regime. The water-based Al2O3 nanofluid is used in a circular plain tube first, and then, this process is repeated for the same tube fitted with twisted tape inserts of twist ratio 1.85 at Reynolds numbers ranging from 680 to 2030. For the numerical analysis, ANSYS FLUENT is used to solve three-dimensional conservation equations of mass, momentum, and energy. The simulated results indicate that when twisted tape is used, heat transfer rates increase significantly with the use of nanofluid. In the case of nanofluid with the plain tube, only 10–24% enhancement in heat transfer rate is noted. On the other hand, almost 27–45% increase in heat transfer is observed compared to that with only water when twisted tape is inserted into it. Also, the friction factor increases as the nanoparticle volume fraction increases. However, the effect on the heat transfer rate is more significant than that on the friction factor. The best thermohydraulic performance factor achieved is 2.1 using nanofluids with a 5% volume fraction of the nanoparticles at a high Reynolds number when twisted tape is also inserted.

References

1.
Choi
,
S. U. S.
, and
Eastman
,
J. A.
,
1995
, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,”
ASME International Mechanical Engineering Congress and Exposition
,
Argonne National Lab.
,
Argonne, IL
,
Oct. 1
, Vol.
66
, pp.
99
105
.
2.
Manglik
,
R. M.
, and
Bergles
,
A. E.
,
1993
, “
Heat Transfer and Pressure-Drop Correlations for Twisted Tape Insert in Isothermal Tubes: Part I E Laminar Flow
,”
ASME J. Heat Transfer
,
115
(
4
), pp.
1224
1231
.
3.
Tu
,
W.
,
Tang
,
Y.
,
Hu
,
J.
,
Wang
,
Q.
, and
Lu
,
L.
,
2015
, “
Heat Transfer and Friction Characteristics of Laminar Flow Through a Circular Tube With Small Pipe Inserts
,”
Int. J. Therm. Sci.
,
96
, pp.
94
101
.
4.
Date
,
A. W.
,
2000
, “
Numerical Prediction of Laminar Flow and Heat Transfer in a Tube With Twisted Tape Insert: Effects of Property Variations and Buoyancy
,”
J. Enhanced Heat Transfer
,
7
(
4
), pp.
217
229
.
5.
Ray
,
S.
, and
Date
,
A. W.
,
2001
, “
Laminar Flow and Heat Transfer Through Square Duct With Twisted Tape Inserts
,”
Int. J. Heat Fluid Flow
,
22
(
4
), pp.
460
472
.
6.
Bakhshi
,
H.
,
Akbari
,
O.
,
Toghraie
,
D.
, and
Joshaghani
,
M.
,
2019
, “
Investigation of Laminar Fluid Flow and Heat Transfer of Nano-Fluid in Trapezoidal Micro Channel With Different Aspects Ratios
,”
Int. J. Numer. Methods Heat Fluid Flow
,
9
(
5
), pp.
1680
1698
.
7.
Rahimi
,
M.
,
Shabanian
,
S. R.
, and
Alsairafi
,
A. A.
,
2009
, “
Experimental and CFD Studies on Heat Transfer and Friction Factor Characteristics of a Tube Equipped With Modified Twisted Tape Inserts
,”
Chem. Eng. Process. Process Intensif.
,
48
(
3
), pp.
762
770
.
8.
Fan
,
A. W.
,
Deng
,
J. J.
,
Nakayama
,
A.
, and
Liu
,
W.
,
2012
, “
Parametric Study on Turbulent Heat Transfer and Flow Characteristics in a Circular Tube Fitted With Louvered Strip Inserts
,”
Int. J. Heat Mass Transfer
,
55
(
19–20
), pp.
5205
5213
.
9.
Naphon
,
P.
,
2006
, “
Heat Transfer and Pressure Drop in the Horizontal Double Pipes With and Without Twisted Tape Insert
,”
Int. Commun Heat Mass Transfer
,
33
(
2
), pp.
166
175
.
10.
Naphon
,
P.
,
2006
, “
Effect of Coil-Wire Insert on Heat Transfer Enhancement and Pressure Drop of the Horizontal Concentric Tubes
,”
Int. Commun Heat Mass Transfer
,
33
(
6
), pp.
753
763
.
11.
Garcia
,
A.
,
Solano
,
J. P.
,
Vicente
,
P. G.
, and
Viedma
,
A.
,
2007
, “
Enhancement of Laminar and Transitional Flow Heat Transfer in Tubes by Means of Wire Coil Inserts
,”
Int. J. Heat Mass Transfer
,
50
(
15–16
), pp.
3176
3189
.
12.
Gunes
,
S.
,
Ozceyhan
,
V.
, and
Buyukalaca
,
O.
,
2010
, “
Heat Transfer Enhancement in a Tube With Equilateral Triangle Cross Sectioned Coiled Wire Inserts
,”
Exp. Therm Fluid Sci.
,
34
(
6
), pp.
684
669
.
13.
Sundar
,
L. S.
, and
Sharma
,
K. V.
,
2010
, “
Turbulent Heat Transfer and Friction Factor of Al2O3 Nanofluid in Circular Tube With Twisted Tape Inserts
,”
Int. J. Heat Mass Transfer
,
53
(
7–8
), pp.
1409
1416
.
14.
Sivashanmugam
,
P.
, and
Suresh
,
S.
,
2006
, “
Experimental Studies on Heat Transfer and Friction Factor Characteristics of Laminar Flow Through a Circular Tube Fitted With Helical Screw-Tape Inserts
,”
Appl. Therm. Eng.
,
26
(
166
), pp.
1990
1997
.
15.
Heris
,
S. Z.
,
Gh. Etemad
,
S. G.
, and
Esfahany
,
M. N.
,
2006
, “
Experimental Investigation of Oxide Nanofluids Laminar Flow Convective Heat Transfer
,”
Int. Commun. Heat Mass Transfer
,
33
(
4
), pp.
529
535
.
16.
Chandrasekar
,
M.
,
Suresh
,
S.
, and
Bose
,
A. C.
,
2010
, “
Experimental Studies on Heat Transfer and Friction Factor Characteristics of Al2O3/Water Nanofluid in a Circular Pipe Under Laminar Flow With Wire Coil Inserts
,”
Exp. Therm. Fluid Sci.
,
34
(
2
), pp.
122
130
.
17.
Hinnawi
,
H.
,
Al-abadi
,
A.
, and
Al-Huniti
,
N. S.
,
2021
, “
Effect of Aspect Ratio on Overall Thermal Performance of Forced Convective Heat Transfer Utilizing Turbulent Nanofluid Flow
,”
ASME J. Therm. Sci. Eng. Appl.
,
13
(
4
), p.
041014
.
18.
Talesh Bahrami
,
H. R.
,
Aminian
,
E.
, and
Saffari
,
H.
,
2020
, “
Energy Transfer Enhancement Inside an Annulus Using Gradient Porous Ribs and Nanofluids
,”
ASME J. Energy Resour. Technol.
,
142
(
12
), p.
122012
.
19.
Khurana
,
D.
, and
Subudhi
,
S.
,
2022
, “
Heat Transfer and Pressure Drop Performance of Al2O3/Water and TiO2/Water Nanofluids in Tube Fitted With Simple or Modified Spiral Tape Inserts
,”
ASME J. Therm. Sci. Eng. Appl.
,
14
(
5
), p.
051012
.
20.
Esmaeilzadeh
,
E.
,
Almohammadi
,
H.
,
Nokhosteen
,
A.
,
Motezaker
,
A.
, and
Omrani
,
A. N.
,
2014
, “
Study on Heat Transfer and Friction Factor Characteristics of -Al2O3/Water Through Circular Tube With Twisted Tape Inserts With Different Thickness
,”
Int. J. of Therm. Sci.
,
82
, pp.
72
83
.
21.
Syam Sundar
,
L.
, and
Sharma
,
K. V.
,
2011
, “
Laminar Convective Heat Transfer and Friction Factor of Al2O3 Nanofluid in Circular Tube Fitted With Twisted Tape Inserts
,”
Int. J. Automot. Mech. Eng.
,
3
, pp.
265
278
.
22.
Mozaffari
,
J.
,
Mirjalily
,
S.
, and
Ahrar
,
A.
,
2021
, “
Experimental Investigation of Enhancing Influence of Al2O3 Nanoparticles on the Convective Heat Transfer in a Tube Equipped With Twisted Tape Inserts
,”
Therm. Sci.
,
25
(
1 Part B
), pp.
541
551
.
23.
Asif
,
M.
,
Chaturvedi
,
R.
, and
Dhiman
,
A.
,
2021
, “
Heat Transfer Enhancement From Inline and Staggered Arrays of Cylinders in a Heat Exchanger Using Alumina–Water Nanofluid
,”
ASME J. Therm. Sci. Eng. Appl.
,
13
(
4
), p.
041025
.
24.
He
,
W.
,
Toghraie
,
S.
,
Lotfipour
,
A.
,
Pourfattah
,
F.
,
Karimipour
,
A.
, and
Afrand
,
M.
,
2020
, “
Effects of Twisted Tape Inserts and Nanofluid on Flow Field and Heat Transfer Characteristics in a Pipe
,”
Int. Commun. Heat Mass Transfer
,
110
, p.
104440
.
25.
Salman
,
S. D.
,
Kadhum
,
A. A. H.
,
Takriff
,
M. S.
, and
Mohamad
,
A. B.
,
2014
, “
Heat Transfer Enhancement of Laminar Nanofluids Flow in a Circular Tube Fitted With Parabolic-Cut Twisted Tape Inserts
,”
Sci. World J.
,
2014
, pp.
1
7
.
26.
Maddah
,
H.
,
Alizadeh
,
M.
,
Ghasemi
,
N.
, and
Alwi
,
S. R. W.
,
2014
, “
Experimental Study of Al2O3/Water Nanofluid Turbulent Heat Transfer Enhancement in the Horizontal Double Pipes Fitted With Modified Twisted Tapes
,”
Int. J. Heat Mass Transfer
,
78
, pp.
1042
1054
.
27.
Habeeb
,
L. J.
,
Saleh
,
F. A.
, and
Maajel
,
B. M.
,
2017
, “
Experimental Investigation of Laminar Convective Heat Transfer and Pressure Drop of Al2O3/Water Nanofluid in Circular Tube Fitted With Twisted Tape Insert
,”
Int. J. Energy Appl. Technol.
,
4
(
2
), pp.
73
86
.
28.
Ali
,
M. A. M.
,
El-Maghlany
,
W. M.
,
Eldrainy
,
Y. A.
, and
Attia
,
A.
,
2018
, “
Heat Transfer Enhancement of Double Pipe Heat Exchanger Using Rotating of Variable Eccentricity Inner Pipe
,”
Alexandria Eng. J.
,
57
(
4
), pp.
3709
3725
.
29.
Shah
,
R. K.
, and
London
,
A. L.
,
1978
,
Laminar Flow Forced Convection in Ducts, Supplement 1 to Advances in Heat Transfer
,
Academic Press
,
New York
.
30.
Shah
,
R. K.
, and
London
,
A. L.
,
1978
, “Dimensionless Groups and Generalized Solutions,”
Laminar Flow Forced Convection in Ducts
,
Academic Press
,
London
, pp.
37
60
.
31.
Donevski
,
B.
, and
Kulesza
,
J.
,
1980
, “
Friction in Isothermal Flow in Tubes With Twisted Tapes
,”
Zeszyty Naukowe Politechniki Lodzkiej Mechanika
,
58
(
358
), pp.
5
25
.
32.
Maradiya
,
C.
,
Vadher
,
J.
, and
Agarwal
,
R.
,
2018
, “
The Heat Transfer Enhancement Techniques and Their Thermal Performance Factor
,”
Beni-Suef Univ. J. Basic Appl. Sci.
,
7
(
1
), pp.
1
21
.
You do not currently have access to this content.