Abstract

Swirl cooling can provide effective protection for the turbine vane leading edge (LE). In this paper, a swirl cooling model for improving the turbine vane heat transfer is established. The model includes the high-temperature mainstream region, LE region, and swirl cooling region. The conjugate heat transfer (CHT) method is used to examine the influence of wall structures on swirl cooling. Then, the best surface structure in the studied range is selected to further analyze the impact of the coolant inlet mass flow. The results show that the circumferential micro-rib structure has a more excellent performance in both fluid flow and cooling performance. The hindering effect of the micro-ribs can effectively avoid the development of axial cross-flow, thus enhancing the heat transfer with a small friction loss increment and providing a lower surface temperature and more uniform temperature distribution. When the inlet mass flowrate improves, the thermal performance factor increases and the LE temperature decreases gradually. Under the same pumping power condition, the circumferential micro-ribs structure has higher heat transfer efficiency. This investigation can provide a new design for further improving the thermal performance of swirl cooling for turbine vanes.

References

1.
Zhang
,
R.
,
Song
,
Y.
,
Han
,
S.
,
Zhou
,
L.
,
Li
,
L.
,
Zhang
,
H.
, and
Du
,
X.
,
2022
, “
Film Cooling Performance Enhancement of Serrate-Type Trenched Cooling Holes by Injecting Mist Into the Cooling Air
,”
Int. J. Therm. Sci.
,
179
, p.
107631
.
2.
Han
,
S.
,
Zhang
,
R.
,
Song
,
Y.
,
Xing
,
J.
,
Zhou
,
L.
,
Li
,
L.
,
Zhang
,
H.
, and
Du
,
X.
,
2022
, “
Numerical Study of Swirl Cooling Enhancement by Adding Mist to Air: Effects of Droplet Diameter and Mist Concentration
,”
Appl. Therm. Eng.
,
211
, p.
118475
.
3.
Kreith
,
F.
, and
Margolis
,
D.
,
1959
, “
Heat Transfer and Friction in Turbulent Vortex Flow
,”
Appl. Sci. Res. Sec. A
,
8
(
1
), pp.
457
473
.
4.
Kreith
,
F.
, and
Sonju
,
O. K.
,
1965
, “
The Decay of a Turbulent Swirl in a Pipe
,”
J. Fluid Mech.
,
22
(
2
), pp.
257
271
.
5.
Li
,
H.
, and
Tomita
,
Y.
,
1994
, “
Characteristics of Swirling Flow in a Circular Pipe
,”
ASME J. Fluids Eng.
,
116
(
2
), pp.
370
373
.
6.
Chang
,
F.
, and
Dhir
,
V. K.
,
1994
, “
Turbulent Flow Field in Tangentially Injected Swirl Flows in Tubes
,”
Int. J. Heat Fluid Flow
,
15
(
5
), pp.
346
356
.
7.
Qian
,
C.
,
Flannery
,
K.
,
Saito
,
K.
,
Downs
,
J.
,
Soechting
,
F.
,
Qian
,
C.
,
Flannery
,
K.
,
Saito
,
K.
,
Downs
,
J.
, and
Soechting
,
F.
,
1997
, “
Innovative Vortex Cooling Concept and its Application to Turbine Airfoil Trailing Edge Cooling Design
,”
Proceedings of the 33rd Joint Propulsion Conference and Exhibit
,
Seattle, WA
,
July 6–9
, p.
3013
.
8.
Ligrani
,
P. M.
,
Hedlund
,
C. R.
,
Babinchak
,
B. T.
,
Thambu
,
R.
,
Moon
,
H. K.
, and
Glezer
,
B.
,
1998
, “
Flow Phenomena in Swirl Chambers
,”
Exp. Fluids
,
24
(
3
), pp.
254
264
.
9.
Chen
,
J.
,
Haynes
,
B. S.
, and
Fletcher
,
D. F.
,
1999
, “
A Numerical and Experimental Study of Tangentially Injected Swirling Pipe Flows
,”
Proceedings of the Second International Conference on CFD in the Minerals and Process Industries
,
CSIRO, Melbourne, Australia
,
Dec. 6–8
, pp.
485
490
.
10.
Hedlund
,
C. R.
,
Ligrani
,
P. M.
,
Glezer
,
B.
, and
Moon
,
H. K.
,
1999
, “
Heat Transfer in a Swirl Chamber at Different Temperature Ratios and Reynolds Numbers
,”
Int. J. Heat Mass Transfer
,
42
(
22
), pp.
4081
4091
.
11.
Hedlund
,
C. R.
, and
Ligrani
,
P. M.
,
2000
, “
Local Swirl Chamber Heat Transfer and Flow Structure at Different Reynolds Numbers
,”
ASME J. Turbomach.
,
122
(
2
), pp.
375
385
.
12.
Biegger
,
C.
, and
Weigand
,
B.
,
2015
, “
Flow and Heat Transfer Measurements in a Swirl Chamber With Different Outlet Geometries
,”
Exp. Fluids
,
56
(
4
), pp.
1
10
.
13.
Jiang
,
Y.
,
Zheng
,
Q.
,
Liu
,
B.
,
Gao
,
J.
, and
Zhang
,
H.
,
2015
, “
The Comparative Study Between Swirl and Impingement of Mist/Air Cooling on Blade Leading Edge
,” ASME Paper No. GT2015-43136.
14.
Jiang
,
Y.
,
Zheng
,
Q.
,
Yue
,
G.
,
Liu
,
B.
, and
Wei
,
X.
,
2016
, “
Numerical Investigation on Blade Leading Edge High-Efficiency Swirl and Impingement Phase Transfer Cooling Mechanism
,”
Numer. Heat Transfer, Part A
,
69
(
1
), pp.
67
84
.
15.
Galeana
,
D.
, and
Beyene
,
A.
,
2018
, “
Experimental Study of Swirl Cooling Flow on a Circular Chamber Using 3-D Stereo-PIV
,” ASME Paper No. POWER2018-7379.
16.
Wang
,
N.
, and
Han
,
J. C.
,
2019
, “
Swirl Impinging Cooling on an Airfoil Leading Edge Model at Large Reynolds Number
,”
ASME J. Therm. Sci. Eng. Appl.
,
11
(
3
), p.
031006
.
17.
Bruschewski
,
M.
,
Scherhag
,
C.
,
Schiffer
,
H. P.
, and
Grundmann
,
S.
,
2016
, “
Influence of Channel Geometry and Flow Variables on Cyclone Cooling of Turbine Blades
,”
ASME J. Turbomach.
,
138
(
6
), p.
061005
.
18.
Hwang
,
J. J.
, and
Cheng
,
C. S.
,
1999
, “
Augmented Heat Transfer in a Triangular Duct by Using Multiple Swirling Jets
,”
ASME J. Heat Transfer
,
121
(
3
), pp.
683
690
.
19.
Lin
,
G.
,
Kusterer
,
K.
,
Bohn
,
D.
,
Sugimoto
,
T.
,
Tanaka
,
R.
, and
Kazari
,
M.
,
2013
, “
Investigation on Heat Transfer Enhancement and Pressure Loss of Double Swirl Chambers Cooling
,”
Propuls. Power Res.
,
2
(
3
), pp.
177
187
.
20.
Kusterer
,
K.
,
Lin
,
G.
,
Bohn
,
D.
,
Sugimoto
,
T.
,
Tanaka
,
R.
, and
Kazari
,
M.
,
2013
, “
Heat Transfer Enhancement for Gas Turbine Internal Cooling by Application of Double Swirl Cooling Chambers
,” ASME Paper No. GT2013-94774.
21.
Kusterer
,
K.
,
Lin
,
G.
,
Bohn
,
D.
,
Sugimoto
,
T.
,
Tanaka
,
R.
, and
Kazari
,
M.
,
2014
, “
Leading Edge Cooling of a Gas Turbine Blade With Double Swirl Chambers
,” ASME Paper No. GT2014-25851.
22.
Rao
,
Y.
,
Biegger
,
C.
, and
Weigand
,
B.
,
2017
, “
Heat Transfer and Pressure Loss in Swirl Tubes With One and Multiple Tangential Jets Pertinent to Gas Turbine Internal Cooling
,”
Int. J. Heat Mass Transfer
,
106
, pp.
1356
1367
.
23.
Du
,
C.
,
Li
,
L.
,
Wu
,
X.
, and
Feng
,
Z.
,
2016
, “
Effect of Jet Nozzle Geometry on Flow and Heat Transfer Performance of Vortex Cooling for Gas Turbine Blade Leading Edge
,”
Appl. Therm. Eng.
,
93
, pp.
1020
1032
.
24.
Du
,
C.
,
Li
,
L.
,
Li
,
S.
, and
Feng
,
Z.
,
2016
, “
Effects of Aerodynamic Parameters on Steam Vortex Cooling Behavior for Gas Turbine Blade Leading Edge
,”
Proc. Inst. Mech. Eng., Part A
,
230
(
4
), pp.
354
365
.
25.
Du
,
C.
,
Li
,
L.
,
Fan
,
X.
, and
Feng
,
Z.
,
2017
, “
Rotational Influences on Aerodynamic and Heat Transfer Behavior of Gas Turbine Blade Vortex Cooling With Bleed Holes
,”
Appl. Therm. Eng.
,
121
, pp.
302
313
.
26.
Fan
,
X.
,
Du
,
C.
,
Li
,
L.
, and
Li
,
S.
,
2017
, “
Numerical Simulation on Effects of Film Hole Geometry and Mass Flow on Vortex Cooling Behavior for Gas Turbine Blade Leading Edge
,”
Appl. Therm. Eng.
,
112
, pp.
472
483
.
27.
Du
,
C.
,
Li
,
L.
,
Chen
,
X.
,
Fan
,
X.
, and
Feng
,
Z.
,
2016
, “Numerical Study on Effects of Jet Nozzle Angle and Number on Vortex Cooling Behavior for Gas Turbine Blade Leading Edge,” ASME Paper No. GT2016-57390.
28.
Du
,
C.
,
Li
,
L.
, and
Fan
,
X.
,
2017
, “
Numerical Study on Vortex Cooling Flow and Heat Transfer Behavior Under Rotating Conditions
,”
Int. J. Heat Mass Transfer
,
105
, pp.
638
647
.
29.
Luan
,
Y.
,
Du
,
C.
,
Fan
,
X.
,
Wang
,
J.
, and
Li
,
L.
,
2018
, “
Investigations of Flow Structures and Heat Transfer in a Swirl Chamber With Different Inlet Chambers and Various Aerodynamic Parameters
,”
Int. J. Heat Mass Transfer
,
118
, pp.
551
561
.
30.
Chang
,
C. Y.
,
Jakirlić
,
S.
,
Dietrich
,
K.
,
Basara
,
B.
, and
Tropea
,
C.
,
2014
, “
Swirling Flow in a Tube With Variably-Shaped Outlet Orifices: An LES and VLES Study
,”
Int. J. Heat Fluid Flow
,
49
, pp.
28
42
.
31.
Li
,
H. W.
,
Gao
,
Y. F.
,
Du
,
C. H.
, and
Hong
,
W. P.
,
2021
, “
Analysis of Vortex Cooling Fluid-Structure Interaction Under Different Vortex Chamber Curvature
,”
Int. J. Therm. Sci.
,
170
, p.
107154
.
32.
Yao
,
R.
,
Su
,
H.
,
Cheng
,
Y.
,
Wang
,
J.
, and
Pu
,
J.
,
2022
, “
Numerical Investigation of a Novel Multistage Swirl Cooling Conception in Blade Leading Edge of Gas Turbine
,”
Int. J. Therm. Sci.
,
172
, p.
107269
.
33.
Panda
,
R. K.
, and
Prasad
,
B. V. S. S. S.
,
2012
, “Conjugate Heat Transfer From a Flat Plate With Combined Impingement and Film Cooling,”
ASME Paper No.
GT2012-68830.
34.
Chi
,
Z.
,
Liu
,
H.
, and
Zang
,
S.
,
2018
, “
Multi-Objective Optimization of the Impingement-Film Cooling Structure of a Gas Turbine Endwall Using Conjugate Heat Transfer Simulations
,”
ASME J. Therm. Sci. Eng. Appl.
,
10
(
2
), p.
021004
.
35.
Sung
,
Y.
,
Dord
,
A. L.
,
Laskowski
,
G. M.
,
Shunn
,
L.
,
Natsui
,
G.
, and
Kapat
,
J.
,
2016
, “Detailed Large Eddy Simulations (LES) of Multi-Hole Effusion Cooling Flow for Gas Turbines,” ASME Paper No. GT2016-57957.
36.
Ravelli
,
S.
, and
Barigozzi
,
G.
,
2017
, “
Comparison of Rans and Detached Eddy Simulation Modeling Against Measurements of Leading Edge Film Cooling on a First-Stage Vane
,”
ASME J. Turbomach.
,
139
(
5
), p.
051005
.
37.
Wang
,
X.
,
Xu
,
H.
,
Wang
,
J.
,
Song
,
W.
, and
Wang
,
L.
,
2021
, “
High Pressure Turbine Blade Internal Cooling in a Realistic Rib Roughened Two-Pass Channel
,”
Int. J. Heat Mass Transfer
,
170
, p.
121019
.
38.
Li
,
H.
,
You
,
H.
,
You
,
R.
, and
Tao
,
Z.
,
2020
, “
Experimental Investigation of Turbulent Flow in a Rotating Straight Channel With Continuous Ribs
,”
Phys. Fluids
,
32
(
1
), p.
015114
.
39.
Alam
,
T.
, and
Kim
,
M. H.
,
2017
, “
Heat Transfer Enhancement in Solar Air Heater Duct With Conical Protrusion Roughness Ribs
,”
Appl. Therm. Eng.
,
126
, pp.
458
469
.
40.
Rao
,
Y.
,
Feng
,
Y.
,
Li
,
B.
, and
Weigand
,
B.
,
2015
, “
Experimental and Numerical Study of Heat Transfer and Flow Friction in Channels With Dimples of Different Shapes
,”
ASME J. Heat Transfer
,
137
(
3
), p.
031901
.
41.
Leontiev
,
A. I.
,
Kiselev
,
N. A.
,
Burtsev
,
S. A.
,
Strongin
,
M. M.
, and
Vinogradov
,
Y. A.
,
2016
, “
Experimental Investigation of Heat Transfer and Drag on Surfaces With Spherical Dimples
,”
Exp. Therm. Fluid. Sci.
,
79
, pp.
74
84
.
42.
Hylton
,
L. D.
,
Mihelc
,
M. S.
,
Turner
,
E. R.
,
Nealy
,
D. A.
, and
York
,
R. E.
,
1983
, “Analytical and Experimental Evaluation of the Heat Transfer Distribution Over the Surfaces of Turbine Vanes,” No. NAS 1.26: 168015.
43.
Huang
,
K. N.
,
Zhang
,
J. Z.
,
Wang
,
C. H.
, and
Tan
,
X. M.
,
2021
, “
Film Cooling Characteristics of Serrated Trenched-Hole on Curved Surfaces
,”
Int. J. Therm. Sci.
,
164
, p.
106919
.
44.
He
,
W.
,
Deng
,
Q.
,
Zhou
,
W.
,
Gao
,
T.
, and
Feng
,
Z.
,
2019
, “
Film Cooling and Aerodynamic Performances of a Turbine Nozzle Guide Vane With Trenched Cooling Holes
,”
Appl. Therm. Eng.
,
150
, pp.
150
163
.
45.
Horiuchi
,
T.
,
Taniguchi
,
T.
,
Tanaka
,
R.
,
Ryu
,
M.
, and
Kazari
,
M.
,
2018
, “Application of Conjugate Heat Transfer Analysis to Improvement of Cooled Turbine Vane and Blade for Industrial Gas Turbine,”
ASME Paper No.
GT2018-75669.
46.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
47.
Spalart
,
P. R.
, and
Shur
,
M.
,
1997
, “
On the Sensitization of Turbulence Models to Rotation and Curvature
,”
Aerosp. Sci. Technol.
,
1
(
5
), pp.
297
302
.
48.
Shur
,
M. L.
,
Strelets
,
M. K.
,
Travin
,
A. K.
, and
Spalart
,
P. R.
,
2000
, “
Turbulence Modeling in Rotating and Curved Channels: Assessing the Spalart-Shur Correction
,”
AIAA J.
,
38
(
5
), pp.
784
792
.
49.
Meng
,
Z.
,
Liu
,
Y.
,
Li
,
Y.
, and
Yu
,
Y.
,
2022
, “
A Study on Cooling Performance of Surface-Modified TBC-Film Cooling System With Bio-Inspired Micro-Riblets
,”
Int. J. Therm. Sci.
,
172
, p.
107340
.
50.
Ling
,
J. P.
,
Ireland
,
P. T.
, and
Harvey
,
N. W.
,
2006
, “
Measurement of Heat Transfer Coefficient Distributions and Flow Field in a Model of a Turbine Blade Cooling Passage With Tangential Injection
,”
ASME Paper No. GT2006-90352
, pp.
325
340
.
51.
International Towing Tank Conference Quality Manual Procedure 7.5- 03- 01- 01
,
1999
.
52.
International Towing Tank Conference Quality Manual Procedure 7.5- 03- 02- 01
,
1999
.
53.
Liu
,
Y.
,
Rao
,
Y.
, and
Weigand
,
B.
,
2019
, “
Heat Transfer and Pressure Loss Characteristics in a Swirl Cooling Tube With Dimples on the Tube Inner Surface
,”
Int. J. Heat Mass Transfer
,
128
, pp.
54
65
.
54.
Jing
,
Q.
,
Xie
,
Y.
, and
Zhang
,
D.
,
2020
, “
Numerical Investigation on the Flow and Heat Transfer in Swirl Chambers With Distributed Multi Exit Slots and Dimple/Protrusion Structure
,”
Int. Commun. Heat Mass Transfer
,
119
, p.
104923
.
You do not currently have access to this content.