Abstract

The aim of this work is to unveil the exergy transfer and overall thermal performance of the metal foams partially filled in varying thicknesses in the vertical channel. The numerical examination performed in this study consists of a heater cum plate assembly which is sited at the core of the vertical channel and the heat transfer from the plates is augmented by placing metal foams with high heat conducting capacities on either side of the channel. The uniqueness of the current investigation is to determine the optimum filling rate in various thicknesses of the channel with respect to overall thermal performance along with exergy transfer. Four different partial filling rates are considered in each thickness of the channel to find the optimum exergy transfer. The integrated Darcy Extended Forchheimer and local thermal non-equilibrium models are used for predicting the flow and heat transfer features via metal foam porous medium. The methodology implemented in this study is affirmed by validating the findings with the literature. The flow and heat transfer, along with exergy and irreversibility parameters are presented and discussed. Results showed that higher working limits permitted by exergy (WLPERe) are obtained for lesser metal foam filling rate as well as for higher metal foam thicknesses for all the cases examined in the study.

References

1.
Zhao
,
C. Y.
,
2012
, “
Review on Thermal Transport in High Porosity Cellular Metal Foams With Open Cells
,”
Int. J. Heat Mass Transfer
,
55
(
13–14
), pp.
3618
3632
.
2.
Kotresha
,
B.
,
Gnanasekaran
,
N.
, and
Balaji
,
C.
,
2019
, “
Numerical Simulations of Flow-Assisted Mixed Convection in a Vertical Channel Filled With High Porosity Metal Foams
,”
Heat Transfer Eng.
,
41
(
8
), pp.
739
750
.
3.
Kamath
,
P. M.
,
Balaji
,
C.
, and
Venkateshan
,
S. P.
,
2011
, “
Experimental Investigation of Flow Assisted Mixed Convection in High Porosity Foams in Vertical Channels
,”
Int. J. Heat Mass Transfer
,
54
(
20
), pp.
5231
5241
.
4.
Kamath
,
P. M.
,
Balaji
,
C.
, and
Venkateshan
,
S. P.
,
2013
, “
Convection Heat Transfer From Aluminium and Copper Foams in a Vertical Channel—An Experimental Study
,”
Int. J. Therm. Sci.
,
64
, pp.
1
10
.
5.
Lu
,
W.
,
Zhao
,
C. Y.
, and
Tassou
,
S. A.
,
2006
, “
Thermal Analysis on Metal-Foam Filled Heat Exchangers. Part I: Metal-Foam Filled Pipes
,”
Int. J. Heat Mass Transfer
,
49
(
15–16
), pp.
2751
2761
.
6.
Venugopal
,
G.
,
Balaji
,
C.
, and
Venkateshan
,
S. P.
,
2010
, “
Experimental Study of Mixed Convection Heat Transfer in a Vertical Duct Filled With Metallic Porous Structures
,”
Int. J. Therm. Sci.
,
49
(
2
), pp.
340
348
.
7.
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
,
2000
, “
Forced Convection in High Porosity Metal Foams
,”
ASME J. Heat Transfer-Trans. ASME
,
122
(
3
), pp.
557
565
.
8.
Venkateshwar
,
K.
,
Tasnim
,
S. H.
,
Simha
,
H.
, and
Mahmud
,
S.
,
2020
, “
Effect of Spatially Varying Morphologies of Metal Foams on Phase Change Process
,”
Therm. Sci. Eng. Prog.
,
9
, p.
100667
. .
9.
Wang
,
Z.
,
Wu
,
J.
,
Lei
,
D.
,
Liu
,
H.
,
Li
,
J.
, and
Wu
,
Z.
,
2020
, “
Experimental Study on Latent Thermal Energy Storage System With Gradient Porosity Copper Foam for Mid-Temperature Solar Energy Application
,”
Appl. Energy
,
261
, p.
114472
.
10.
Lin
,
W.
,
Xie
,
G.
,
Yuana
,
J.
, and
Sunden
,
B.
,
2015
, “
Comparison and Analysis of Heat Transfer in Aluminum Foam Using Local Thermal Equilibrium or Nonequilibrium Model
,”
Heat Transfer Eng.
,
37
(
3–4
), pp.
1
39
. .
11.
Phanikumar
,
M. S.
, and
Mahajan
,
R. L.
,
2002
, “
Non-Darcy Natural Convection in High Porosity Metal Foams
,”
Int. J. Heat Mass Transfer
,
45
(
18
), pp.
3781
3793
.
12.
Liu
,
H.
,
Yu
,
Q. N.
,
Qu
,
Z. G.
, and
Yang
,
R. Z.
,
2017
, “
Simulation and Analytical Validation of Forced Convection Inside Open-Cell Metal Foams
,”
Int. J. Therm. Sci.
,
111
, pp.
234
245
.
13.
Mancin
,
S.
,
Zilio
,
C.
,
Diani
,
A.
, and
Rossetto
,
L.
,
2013
, “
Air Forced Convection Through Metal Foams: Experimental Results and Modeling
,”
Int. J. Heat Mass Transfer
,
62
, pp.
112
123
.
14.
Yang
,
C.
,
Nakayama
,
A.
, and
Liu
,
W.
,
2012
, “
Heat Transfer Performance Assessment for Forced Convection in a Tube Partially Filled With a Porous Medium
,”
Int. J. Therm. Sci.
,
54
, pp.
98
108
.
15.
Nimvari
,
M. E.
, and
Jouybari
,
N. F.
,
2017
, “
Investigation of Turbulence Effects Within Porous Layer on the Thermal Performance of a Partially Filled Pipe
,”
Int. J. Therm. Sci.
,
118
, pp.
374
385
.
16.
Teamah
,
M. A.
,
El-Maghlany
,
W. M.
, and
Khairat Dawood
,
M. M.
,
2011
, “
Numerical Simulation of Laminar Forced Convection in Horizontal Pipe Partially or Completely Filled With Porous Material
,”
Int. J. Therm. Sci.
,
50
(
8
), pp.
1512
1522
.
17.
Nimvari
,
M. E.
,
Maerefat
,
M.
, and
El-Hossaini
,
M. K.
,
2012
, “
Numerical Simulation of Turbulent Flow and Heat Transfer in a Channel Partially Filled With a Porous Media
,”
Int. J. Therm. Sci.
,
60
, pp.
131
141
.
18.
Lu
,
W.
,
Zhang
,
T.
, and
Yang
,
M.
,
2016
, “
Analytical Solution of Forced Convective Heat Transfer in Parallel-Plate Channel Partially Filled With Metallic Foams
,”
Int. J. Heat Mass Transfer
,
100
, pp.
718
727
.
19.
Lu
,
W.
,
Zhang
,
T.
,
Yang
,
M.
, and
Wu
,
Y.
,
2017
, “
Analytical Solutions of Force Convective Heat Transfer in Plate Heat Exchangers Partially Filled With Metal Foams
,”
Int. J. Heat Mass Transfer
,
110
, pp.
476
481
.
20.
Kotresha
,
B.
, and
Gnanasekaran
,
N.
,
2018
, “
Investigation of Mixed Convection Heat Transfer Through Metal Foams Partially Filled in a Vertical Channel by Using Computational Fluid Dynamics
,”
ASME J. Heat Transfer-Trans. ASME
,
140
(
11
), p.
112501
.
21.
Kotresha
,
B.
, and
Gnanasekaran
,
N.
,
2018
, “
Effect of Thickness and Thermal Conductivity of Metal Foams Filled in a Vertical Channel—A Numerical Study
,”
Int. J. Numer. Meth. Heat Fluid Flow
,
29
(
1
), pp.
184
203
. .
22.
Alkam
,
M. K.
,
Al-Nimr
,
M. A.
, and
Hamdan
,
M. O.
,
2002
, “
On Forced Convection in Channels Partially Filled With Porous Substrates
,”
Heat Mass Transfer
,
38
(
4–5
), pp.
337
342
.
23.
Baragh
,
S.
,
Shokouhmand
,
H.
,
Ajarostaghi
,
S. S. M.
, and
Nikian
,
M.
,
2018
, “
An Experimental Investigation on Forced Convection Heat Transfer of Single-Phase Flow in a Channel With Different Arrangements of Porous Media
,”
Int. J. Therm. Sci.
,
134
, pp.
370
379
.
24.
Kurtbas
,
I.
,
Celik
,
N.
, and
Dinçer
,
I.
,
2010
, “
Exergy Transfer in a Porous Rectangular Channel
,”
Energy
,
35
(
1
), pp.
451
460
.
25.
Das
,
B.
, and
Giri
,
A.
,
2016
, “
Combined Energy and Exergy Analysis of a Nonisothermal Fin Array With Non-Boussinesq Variable Property Fluid
,”
ASME J. Therm. Sci. Eng. Appl.
,
8
(
3
), p.
031010
.
26.
Lam
,
P. A. K.
, and
Prakash
,
K. A.
,
2017
, “
Effect of Magnetic Field on Natural Convection and Entropy Generation in Al2O3/Water Nanofluid Filled Enclosure With Twin Protruding Heat Sources
,”
ASME J. Therm. Sci. Eng. Appl.
,
10
(
4
), p.
024502
.
27.
Qasim
,
M.
, and
Afridi
,
M. I.
,
2017
, “
Effects of Energy Dissipation and Variable Thermal Conductivity on Entropy Generation Rate in Mixed Convection Flow
,”
ASME J. Therm. Sci. Eng. Appl.
,
10
(
4
), p.
044501
.
28.
Morkos
,
B.
,
Dochibhatla
,
S. V. S.
, and
Summers
,
J. D.
,
2018
, “
Effects of Metal Foam Porosity, Pore Size and Ligament Geometry on Fluid Flow
,”
ASME J. Therm. Sci. Eng. Appl.
,
10
(
4
), p.
041007
.
29.
Mostafa
,
S.
,
Masoumeh
,
N.
,
Mehmet
,
Y.
, and
Ali
,
K.
,
2017
, “
Numerical Heat Transfer and Entropy Analysis on Liquid Slip Flows Through Parallel-Plate Microchannels
,”
ASME J. Therm. Sci. Eng. Appl.
,
10
(
2
), p.
021003
.
30.
Elliott
,
A.
,
Torabi
,
M.
, and
Karimi
,
N.
,
2017
, “
Thermodynamics Analyses of Porous Microchannels with Asymmetric Thick Walls and Exothermicity: An Entropic Model of Microreactors
,”
ASME J. Therm. Sci. Eng. Appl.
,
9
(
4
), p.
041013
.
31.
Kosarineia
,
A.
, and
Sharhani
,
S.
,
2018
, “
Second Law Analysis of Magneto-Micropolar Fluid Flow Between Parallel Porous Plates
,”
ASME J. Therm. Sci. Eng. Appl.
,
10
(
4
), p.
041017
.
32.
Malekpour
,
A.
,
Karimi
,
N.
, and
Mehdizadeh
,
A.
,
2018
, “
Magnetohydrodynamics, Natural Convection, and Entropy Generation of CuO–Water Nanofluid in an I-Shape Enclosure—A Numerical Study
,”
ASME J. Therm. Sci. Eng. Appl.
,
10
(
6
), p.
061016
.
33.
Kothandaraman
,
C. P.
, and
Subramanyan
,
S.
,
2018
,
Heat and Mass Transfer Data Hand Book
,
New Age International Publishers
,
London
.
34.
Yilmaz
,
M.
,
Sara
,
O. N.
, and
Karsli
,
S.
,
2001
, “
Performance Evaluation Criteria for Heat Exchangers Based on Second Law Analysis
,”
Exergy Int. J.
,
1
(
4
), pp.
278
294
.
35.
Garrity
,
P. T.
,
Klausner
,
J. F.
, and
Mei
,
R.
,
2010
, “
Performance of Aluminum and Carbon Foams for Air Side Heat Transfer Augmentation
,”
ASME J. Heat Transfer-Trans. ASME
,
132
(
12
), p.
121901
.
36.
Tian
,
Y.
, and
Zhao
,
C. Y.
,
2013
, “
Thermal and Exergetic Analysis of Metal Foam-Enhanced Cascaded Thermal Energy Storage (MF-CTES)
,”
Int. J. Heat Mass Transfer
,
58
(
1–2
), pp.
86
96
.
37.
Jadhav
,
P. H.
,
Nagarajan
,
G.
, and
Perumal
,
D. A.
,
2021
, “
Conjugate Heat Transfer Study Comprising the Effect of Thermal Conductivity and Irreversibility in a Pipe Filled With Metallic Foams
,”
Heat Mass Transfer
,
57
(
6
), pp.
911
930
.
38.
Yousef
,
M. S.
,
Sharaf
,
M.
, and
Huzayyin
,
A. S.
,
2022
, “
Energy, Exergy, Economic, and Enviroeconomic Assessment of a Photovoltaic Module Incorporated With a Paraffin-Metal Foam Composite: An Experimental Study
,”
Energy
,
238
(Part B), p.
121807
.
39.
Peng
,
H.
,
Li
,
M.
, and
Liang
,
X.
,
2020
, “
Thermal-Hydraulic and Thermodynamic Performance of Parabolic Trough Solar Receiver Partially Filled With Gradient Metal Foam
,”
Energy
,
211
, p.
119046
.
40.
Webb
,
R. L.
, and
Eckert
,
E. R. G.
,
1972
, “
Application of Rough Surfaces to Heat Exchanger Design
,”
Int. J. Heat Mass Transfer
,
15
(
9
), pp.
1647
1658
.
You do not currently have access to this content.