Abstract

In this paper, the flow condensation heat transfer characteristics of the environmentally friendly nearly-azeotropic refrigerant R1234ze(E)/R152a (mass ratio of 40:60) in smooth tubes with varying structures were numerically investigated. Under the operating conditions of mass flux of 400 kg/m2/s, heat flux of 12 kW/m2, and saturation temperature of 308.15 K, this study investigated the influence of circular tube inner diameter, elliptical tube aspect ratio, and installation orientation on condensation heat transfer, while the influence on pressure drop has not been taken into account in the present study. The results indicate that the condensation heat transfer coefficient in the tube increases as the inner diameter of the circular tube decreases. The condensation heat transfer coefficient increases by 1.086 times when the circular tube inner diameter is reduced from 10.7 mm to 5 mm. Under identical operating conditions, the condensation heat transfer coefficient of the mixed refrigerant in elliptical tubes increases with an increase in the aspect ratio. The average condensation heat transfer coefficient increases by 18.21% as the aspect ratio of the elliptical tube increases from 1 to 2. Compared to a vertical elliptical tube, a horizontal elliptical tube is more favorable for condensation heat transfer within the tube.

References

1.
Zhang
,
Z. H.
,
Wang
,
R. N.
,
Gao
,
Y.
,
Liu
,
L. L.
, and
Chen
,
J. L.
,
2023
, “
Explore the Industry Development Path of the New Era Through the Refrigerant Substitution Course
,”
Refrig. Air-Cond.
,
23
(
1
), pp.
1
10+15
.
2.
Zuper
,
P.
,
1992
, “
CFC Substitutes to Face International Controls
,”
Chem. Eng. News
,
70
(
42
), pp.
17
18
.
3.
Montzka
,
S. A.
,
McFarland
,
M.
,
Andersen
,
S. O.
,
Miller
,
B. R.
,
Fahey
,
D. W.
,
Hall
,
B. D.
,
Hu
,
L.
,
Siso
,
C.
, and
Elkins
,
J. W.
,
2015
, “
Recent Trends in Global Emissions of Hydrochlorofluorocarbons and Hydrofluorocarbons: Reflecting on the 2007 Adjustments to the Montreal Protocol
,”
J. Phys. Chem.
,
119
(
19
), pp.
4439
4449
.
4.
Heath
,
E. A.
,
2017
, “
Amendment to the Montreal Protocol on Substances That Deplete the Ozone Layer (Kigali Amendment)
,”
Int. Leg. Mater.
,
56
(
1
), pp.
193
205
.
5.
Bobbo
,
S.
,
Di Nicola
,
G. D.
,
Zilio
,
C.
,
Brown
,
J. S.
, and
Fedele
,
L.
,
2018
, “
Low GWP Halocarbon Refrigerants: A Review of Thermophysical Properties
,”
Int. J. Refrig.
,
90
, pp.
181
201
.
6.
Wallington
,
T. J.
,
Andersen
,
M. P. S.
, and
Nielsen
,
O. J.
,
2015
, “
Atmospheric Chemistry of Short-Chain Haloolefins: Photochemical Ozone Creation Potentials (POCPs), Global Warming Potentials (GWPs), and Ozone Depletion Potentials (ODPs)
,”
Chemosphere
,
129
(
SI
), pp.
135
141
.
7.
Molinaroli
,
L.
,
Lucchini
,
A.
,
Colombo
,
L.
, and
Bocchinfuso
,
F.
,
2020
, “
First Experimental Results of the Use of R1234yf and R1234ze(E) as Drop-In Substitutes for R134a in a Water-to-Water Heat Pump
,”
Proceedings of 37th UIT Heat Transfer Conference
,
Padova, Italy
,
June 24–26
.
8.
Bao
,
S. F.
,
Guo
,
J. X.
,
Yan
,
C. J.
,
Sun
,
J. F.
, and
Liu
,
Z. J.
,
2021
, “
Theoretical Study on Optimal Composition of Non-Azeotropic Refrigerant Mixtures of R1234zd(E)/R1234ze(E)
,”
J. Qingdao Univ. Technol.
,
42
(
6
), pp.
114
119+134
.
9.
Padmavathy
,
S. R.
,
Chockalingam
,
M. P.
,
Kamaraj
,
N.
,
Glivin
,
G.
,
Thangaraj
,
V.
, and
Moorthy
,
B.
,
2021
, “
Performance Studies of Low GWP Refrigerants as Environmental Alternatives for R134a in Low-Temperature Applications
,”
Environ. Sci. Pollut. Res.
,
29
(
57
), pp.
85945
85954
.
10.
Zhao
,
Z.
,
Luo
,
J.
,
Song
,
Q.
,
Yang
,
K. Y.
,
Wang
,
Q.
, and
Chen
,
G. M.
,
2023
, “
Theoretical Investigation and Comparative Analysis of the Linde–Hampson Refrigeration System Using Eco-Friendly Zeotropic Refrigerants Based on R744/R1234ze(Z) for Freezing Process Applications
,”
Int. J. Refrig.
,
145
, pp.
30
39
.
11.
Huo
,
E. G.
,
Dai
,
Y. D.
,
Geng
,
P.
, and
Cao
,
M. C.
,
2015
, “
Feasibility of Using R1234ze and R152a Mixture as Alternative for R22
,”
Ciesc. J.
,
66
(
12
), pp.
4725
4729
.
12.
Li
,
B.
,
Feng
,
L. H.
,
Wang
,
L. L.
, and
Dai
,
Y. D.
,
2021
, “
Experimental Investigation of Condensation Heat Transfer and Pressure Drop of R152a/R1234ze(E) in a Smooth Horizontal Tube
,”
Heat Transfer Res.
,
52
(
7
), pp.
35
54
.
13.
Dai
,
Y. D.
,
Xu
,
C. P.
,
Qiu
,
K.
, and
Liao
,
Y.
,
2022
, “
Condensation Heat Transfer of R1234ze(E)/R152a in Horizontal Tube and Development of Correlation
,”
J. Braz. Soc. Mech. Sci. Eng.
,
44
(
10
), p.
464
.
14.
Meyer
,
J. P.
, and
Ewim
,
D. R. E.
,
2018
, “
Heat Transfer Coefficients During the Condensation of Low Mass Fluxes in Smooth Horizontal Tubes
,”
Int. J. Multiphase Flow
,
99
(
9
), pp.
485
499
.
15.
Garimella
,
S.
,
Milkie
,
J.
, and
Macdonald
,
M.
,
2020
, “
Condensation of Zeotro-Pic Mixtures of Low-Pressure Hydrocarbons and Synthetic Refrigerants
,”
Int. J. Heat Mass Transfer
,
162
, p.
120301
.
16.
Zhang
,
J.
,
Elmegaard
,
B.
, and
Haglind
,
F.
,
2021
, “
Condensation Heat Transfer and Pressure Drop Characteristics of Zeotropic Mixtures of R134a/R245fa in Plate Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
164
(
0
), p.
120577
.
17.
Zhang
,
Y.
,
Jia
,
L.
,
Ding
,
Y.
, and
Dang
,
C.
,
2019
, “
Analytical Model for the Condensation Heat and Mass Transfer Characteristics of Binary Zeotropic Mixtures
,”
Int. J. Heat Mass Transfer
,
142
, pp.
661
667
.
18.
Wang
,
L. L.
,
Jiao
,
P. F.
,
Dang
,
C. B.
,
Hihara
,
E.
, and
Dai
,
B. M.
,
2021
, “
Condensation Heat and Mass Transfer Characteristics of Low GWP Zeotropic Refrigerant Mixture R1234yf/R32 Inside a Horizontal Smooth Tube: An Experimental Study and Non-Equilibrium Film Model Development
,”
Int. J. Therm. Sci.
,
170
, p.
107090
.
19.
Zhuang
,
X. R.
,
Chen
,
G. F.
,
Guo
,
H.
,
Song
,
Q. L.
,
Tang
,
Q. X.
,
Yang
,
Z. Q.
,
Zou
,
X.
, and
Gong
,
M. Q.
,
2018
, “
Experimental Investigation on Flow Condensation of Zeotropic Mixtures of Methane/Ethane in a Horizontal Smooth Tube
,”
Int. J. Refrig.
,
85
, pp.
120
134
.
20.
Dai
,
Y. D.
,
Zhu
,
S. Y.
,
Guo
,
Y. J.
, and
Zou
,
S. K.
,
2021
, “
Numerical Study on Condensation Heat Transfer of R290 Inside a 4-mm-ID Horizontal Smooth Tube
,”
J. Braz. Soc. Mech. Sci. Eng.
,
44
(
1
), pp.
1
15
.
21.
Shang
,
S. W.
,
Rong
,
L. Y.
,
Zhu
,
C.
, and
Qian
,
H.
,
2021
, “
Numerical Simulation Study on Condensation of R22, R410A and R290 in Horizontal Circular Tube
,”
J. Shenyang Jianzhu Univ. (Nat. Sci.)
,
37
(
1
), pp.
156
163
.
22.
Liu
,
Y.
,
Wen
,
J.
,
Xu
,
P.
,
Khan
,
M.
,
Wang
,
S. M.
, and
Tu
,
J. Y.
,
2021
, “
Numerical Investigation on the Condensation of R134a, R1234ze(E) and R450A in Mini-Channels
,”
Int. J. Refrig.
,
130
, pp.
305
316
.
23.
Qiu
,
K.
,
Li
,
B.
,
Wang
,
L. L.
, and
Dai
,
Y. D.
,
2020
, “
Condensation Heat Transfer Characteristics of a Mixture of R1234ze (E) and R152a Flowing Inside a Horizontal Micro-Fin Tube
,”
Exp. Heat Transfer
,
35
(
1
), pp.
1
21
.
24.
Brackbill
,
J. U.
,
Kothe
,
D. B.
, and
Zemach
,
C.
,
1992
, “
A Continuum Method for Modeling Surface Tension
,”
J. Comput. Phys.
,
100
(
2
), pp.
335
354
.
25.
Menter
,
F. R.
,
2012
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
26.
Lee
,
W. H.
,
2013
, “
A Pressure Iteration Scheme for Two-Phase Flow Modeling
,”
Comput. Methods Two-Phase Flow Part. Transp: (With CD-ROM)
, pp.
61
82
.
You do not currently have access to this content.