Abstract

We experimentally investigated the evaporation characteristics of a sessile water droplet on a glass substrate with different surface roughness levels. The influence of five parameters is evaluated for the evaporation process: substrate temperature (30 °C, 45 °C, and 60 °C), surface roughness (P0, P600, and P60), droplet volume (3, 5, and 8 µL), water droplets initial temperature (30 °C, 40 °C, and 60 °C), and inclination angle (0 deg, 45 deg, and 75 deg) of the glass substrate. The Taguchi orthogonal array design of L27 is utilized to establish minimal candidate trial points for experimental works, and more trials have been conducted to quantify the effects accurately. Then, analysis of variance (ANOVA) has been used to evaluate the evaporation times for the sessile droplets. The results indicate that evaporation times decrease with rising substrate temperatures, increasing substrate inclination angle, and increasing initial water droplet temperatures. In contrast, evaporation times rise with increasing surface roughness and droplet volumes. After evaluation of the ANOVA analysis, surface roughness levels and droplet volumes are considered the most influential parameters after substrate temperatures, which is the most effective parameter on the evaporation times. On the other hand, initial water droplet temperatures and substrate inclination angle are less effective considering droplet evaporation times. A linear regression fit was derived via ANOVA analysis for the evaporation time, and the best mean deviation was found to be 10% from the experiments. The experimental outcomes were compared to previous research, and correlations were derived. The proposed correlation has given good results considering experimental and literature data.

References

1.
Stauber
,
J. M.
,
Wilson
,
S. K.
,
Duffy
,
B. R.
, and
Sefiane
,
K.
,
2014
, “
On the Lifetimes of Evaporating Droplets
,”
J. Fluid Mech.
,
744
, p.
R2
.
2.
Brutin
,
D.
, and
Starov
,
V.
,
2018
, “
Recent Advances in Droplet Wetting and Evaporation
,”
Chem. Soc. Rev.
,
47
(
2
), pp.
558
585
.
3.
Popov
,
Y. O.
,
2005
, “
Evaporative Deposition Patterns: Spatial Dimensions of Deposit
,”
Phys. Rev. E
,
71
(
3
), p.
036313
.
4.
Saada
,
M. A.
,
Chikh
,
S.
, and
Tadrist
,
L.
,
2013
, “
Evaporation of a Sessile Drop With Pinned or Receding Contact Line on a Substrate With Different Thermophysical Properties
,”
Int. J. Heat Mass Transf.
,
58
(
1–2
), pp.
197
208
.
5.
Lopes
,
M. C.
,
Bonaccurso
,
E.
,
Gambaryan-Roisman
,
T.
, and
Stephan
,
P.
,
2013
, “
Influence of the Substrate Thermal Properties on Sessile Droplet Evaporation: Effect of Transient Heat Transport
,”
Colloids Surf., A
,
432
, pp.
64
70
.
6.
Nguyen
,
T. A.
, and
Nguyen
,
A. V.
,
2012
, “
On the Lifetime of Evaporating Sessile Droplets
,”
Langmuir
,
28
(
3
), pp.
1924
1930
.
7.
Zhao
,
F.
,
Liu
,
Q.
,
Zhao
,
C.
, and
Bo
,
H.
,
2019
, “
Influence Region Theory of the Evaporating Droplet
,”
Int. J. Heat Mass Transf.
,
129
, pp.
827
841
.
8.
Zhang
,
C.
,
Zhang
,
H.
,
Zhang
,
X.
,
Yang
,
C.
, and
Cheng
,
P.
,
2021
, “
Evaporation of a Sessile Droplet on Flat Surfaces: An Axisymmetric Lattice Boltzmann Model With Consideration of Contact Angle Hysteresis
,”
Int. J. Heat Mass Transf.
,
178
, p.
121577
.
9.
Crafton
,
E. F.
, and
Black
,
W. Z.
,
2024
, “
Heat Transfer and Evaporation Rates of Small Liquid Droplets on Heated Horizontal Surfaces
,”
Int. J. Heat Mass Transf.
,
47
(
6–7
), pp.
1187
1200
.
10.
Sobac
,
B.
, and
Brutin
,
D.
,
2012
, “
Thermal Effects of the Substrate on Water Droplet Evaporation
,”
Phys. Rev. E
,
86
(
2
), p.
021602
.
11.
Gao
,
M.
,
Kong
,
P.
,
Zhang
,
L.
, and
Liu
,
J.
,
2017
, “
An Experimental Investigation of Sessile Droplets Evaporation on Hydrophilic and Hydrophobic Heating Surface With Constant Heat Flux
,”
Int. Commun. Heat Mass Transf.
,
88
, pp.
262
268
.
12.
Gao
,
M.
,
Kong
,
P.
, and
Zhang
,
L.
,
2018
, “
Evaporation Dynamics of Different Sizes Sessile Droplets on Hydrophilic and Hydrophobic Heating Surface Under Constant Wall Heat Fluxes Conditions
,”
Int. Commun. Heat Mass Transf.
,
93
, pp.
93
99
.
13.
Kumar
,
M.
, and
Bhardwaj
,
R.
,
2018
, “
A Combined Computational and Experimental Investigation on Evaporation of a Sessile Water Droplet on a Heated Hydrophilic Substrate
,”
Int. J. Heat Mass Transf.
,
122
, pp.
1223
1238
.
14.
Gurrala
,
P.
,
Katre
,
P.
,
Balusamy
,
S.
,
Banerjee
,
S.
, and
Sahu
,
K. C.
,
2019
, “
Evaporation of Ethanol-Water Sessile Droplet of Different Compositions at an Elevated Substrate Temperature
,”
Int. J. Heat Mass Transf.
,
145
, p.
118770
.
15.
Ma
,
M. C.
,
Song
,
J. W.
, and
Fan
,
L. W.
,
2021
, “
Evaporation Kinetics of Sessile Water Droplets on a Smooth Stainless Steel Surface at Elevated Temperatures and Pressures
,”
Langmuir
,
37
(
14
), pp.
4200
4212
.
16.
Furmidge
,
C. G. L.
,
1962
, “
Studies at Phase Interfaces I. The Sliding of Liquid Drops on Solid Surfaces and a Theory for Spray Retention
,”
J. Colloid Sci.
,
17
(
4
), pp.
309
324
.
17.
Extrand
,
C. W.
, and
Kumagai
,
Y.
,
1995
, “
Liquid Drops on an Inclined Plane: The Relation Between Contact Angles, Drop Shape, and Retentive Force
,”
J. Colloid Interface Sci.
,
170
(
2
), pp.
515
521
.
18.
Kim
,
H. Y.
,
Lee
,
H. J.
, and
Kang
,
B. H.
,
2002
, “
Sliding of Liquid Drops Down an Inclined Solid Surface
,”
J. Colloid Interface Sci.
,
247
(
2
), pp.
372
380
.
19.
Annapragada
,
S. R.
,
Murthy
,
J. Y.
, and
Garimella
,
S. V.
,
2012
, “
Droplet Retention on an Incline
,”
Int. J. Heat Mass Transf.
,
55
(
5–6
), pp.
1457
1465
.
20.
Chou
,
T. H.
,
Hong
,
S. J.
,
Sheng
,
Y. J.
, and
Tsao
,
H. K.
,
2012
, “
Drops Sitting on a Tilted Plate: Receding and Advancing Pinning
,”
Langmuir
,
28
(
11
), pp.
5158
5166
.
21.
Yilbas
,
B. S.
,
Al-Sharafi
,
A.
,
Ali
,
H.
, and
Al-Aqeeli
,
N.
,
2017
, “
Dynamics of a Water Droplet on a Hydrophobic Inclined Surface: Influence of Droplet Size and Surface Inclination Angle on Droplet Rolling
,”
RSC Adv.
,
7
(
77
), pp.
48806
48818
.
22.
Qi
,
W.
,
Li
,
J.
, and
Weisensee
,
P. B.
,
2019
, “
Evaporation of Sessile Water Droplets on Horizontal and Vertical Biphoric Patterned Surfaces
,”
Langmuir
,
35
(
52
), pp.
17185
17192
.
23.
Katre
,
P.
,
Gurrala
,
P.
,
Balusamy
,
S.
,
Banerjee
,
S.
, and
Sahu
,
K. C.
,
2020
, “
Evaporation of Sessile Ethanol-Water Droplets on a Critically Inclined Heated Surface
,”
Int. J. Multiphase Flow
,
131
, p.
103368
.
24.
Pan
,
Z.
, and
Wang
,
Y.
,
2022
, “
Evaporation of a Small Water Droplet Sessile on Inclined Surfaces
,”
Int. J. Heat Mass Transf.
,
184
, p.
122330
.
25.
Charitatos
,
V.
,
Pham
,
T.
, and
Kumar
,
S.
,
2021
, “
Droplet Evaporation on Inclined Substrates
,”
Phys. Rev. Fluids
,
6
(
8
), p.
084001
.
26.
Tredenick
,
E. C.
,
Forster
,
W. A.
,
Pethiyagoda
,
R.
,
van Leeuwen
,
R. M.
, and
McCue
,
S. W.
,
2021
, “
Evaporating Droplets on Inclined Plant Leaves and Synthetic Surfaces: Experiments and Mathematical Models
,”
J. Colloid Interface Sci.
,
592
, pp.
329
341
.
27.
Liu
,
J.
,
Zhao
,
C. J.
,
Liu
,
H.
, and
Lu
,
W. Q.
,
2018
, “
Numerical Study of Laminar Natural Convection Heat Transfer From a Hemisphere With Adiabatic Plane and Isothermal Hemispherical Surface
,”
Int. J. Therm. Sci.
,
131
, pp.
132
143
.
28.
Mathers
,
W. G.
,
Madden
,
A. J.
, and
Piret
,
E. L.
,
1957
, “
Simultaneous Heat and Mass Transfer in Free Convection
,”
Ind. Eng. Chem.
,
49
(
6
), pp.
961
968
.
29.
Çengel
,
Y. A.
,
2012
,
Heat and Mass Transfer: A Practical Approach
, 3rd Ed.,
Güven Bilimsel
,
İzmir
.
30.
Eick
,
J. D.
,
Good
,
R. J.
, and
Neumann
,
A. W.
,
1975
, “
Thermodynamics of Contact Angles II. Rough Solid Surfaces
,”
J. Colloid Interface Sci.
,
53
(
2
), pp.
235
248
.
31.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid. Sci.
,
1
(
1
), pp.
3
17
.
32.
Mustapha
,
A. N.
,
Zhang
,
Y.
,
Zhang
,
Z.
,
Ding
,
Y.
,
Yuan
,
Q.
, and
Li
,
Y.
,
2021
, “
Taguchi and ANOVA Analysis for the Optimization of the Microencapsulation of a Volatile Phase Change Material
,”
J. Mater. Res. Technol.
,
11
, pp.
667
680
.
33.
Chen
,
W. H.
,
Chen
,
C. J.
, and
Hung
,
C. I.
,
2013
, “
Taguchi Approach for Co-Gasification Optimization of Torrefied Biomass and Coal
,”
Bioresour. Technol.
,
144
, pp.
615
622
.
34.
Kır
,
H.
, and
Apay
,
S.
,
2020
, “
Elektrolitik Yöntemle Sert Krom Kaplanan Yapı çeliğinde Kaplama Parametrelerinin Taguchi Metodu ile Optimizasyonu
,”
Gümüşhane Üniversitesi Fen Bilimleri Dergisi
,
10
(
1
), pp.
7
14
.
35.
Serencam
,
H.
, and
Uçurum
,
M.
,
2019
, “
Taguchi Deney Tasarimi Kullanilarak Uçucu kül ile Ni (II) Gideriminde Bazi Adsorpsiyon Parametrelerinin Etkinliğinin Irdelenmesi
,”
Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi
,
8
(
1
), pp.
336
344
.
36.
Tiemann
,
T. K.
, and
Mahbobi
,
M.
,
2010
,
Introductory Business Statistics with Interactive Spreadsheets
, 1st Canadian Ed.,
BCcampus BC Open Textbook Project
,
Ottawa, Canada
.
You do not currently have access to this content.