Abstract

The branched wavy heat sink (BWHS) is found as a novel design for heat sink application. The aim of this paper is first to investigate the optimum branch angle by varying the branch angle while keeping the constant parametric value such as pitch, wavelength, and secondary width; the idea was established, and we found that a 45-deg branch angle is the best among other branch angles. After that, we varied the next important parametric value, i.e., secondary width, to know the optimum secondary width. Four secondary pass angle (branch angle) configurations (25 deg, 35 deg, 45 deg, and 55 deg) were proposed and numerically investigated by keeping the constant parametric value. The RNG k–ɛ model has been employed with the full domain model approach in the computational analysis. Further, the optimum branch angle has also been investigated with the varying secondary width. The secondary flowrates were strongly affected in all the cases. The pressure loss increases as the secondary pass angle increases. However, a secondary pass maintains pressure uniformity in the spanwise direction through flow migration. It is clear that raising the secondary pass angle reduces the hot spot region. Finally, the optimum branch angle has also been investigated with varying secondary widths of 0.5 mm, 0.25 mm, and 0.20 mm. According to the thermofluidic study, the BWHS design with 45-deg angle and 0.25-mm secondary width has better heat convection performance among all. With a 2% volumetric concentration of nanofluid, the heat transfer rate improves by about 10% compared to water. As a result, the 45-deg BWHS presents a viable avenue for further study. The heat transfer rate of the microchannel heat sink (MCHS) is greatly aided by secondary flow mixing. The branched wavy heat sinks (BWHSs) under forced convection with water/Al2O3 under the Re = 100–500 have been investigated.

References

1.
Kadam
,
S. T.
, and
Kumar
,
R.
,
2014
, “
Twenty First Century Cooling Solution: Microchannel Heat Sinks
,”
Int. J. Therm. Sci.
,
85
, pp.
73
92
.
2.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
,
1981
, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electron Device Lett.
,
2
(
5
), pp.
126
129
.
3.
Qu
,
W.
, and
Mudawar
,
I.
,
2002
, “
Experimental and Numerical Study of Pressure Drop and Heat Transfer in a Single-Phase Micro-Channel Heat Sink
,”
Int. J. Heat Mass Transfer
,
45
(
12
), pp.
2549
2565
.
4.
Qu
,
W.
, and
Mudawar
,
I.
,
2002
, “
Analysis of Three-Dimensional Heat Transfer in Micro-Channel Heat Sinks
,”
Int. J. Heat Mass Transfer
,
45
(
19
), pp.
3973
3985
.
5.
Garimella
,
S. V.
, and
Sobhan
,
C. B.
,
2003
, “
Transport in Microchannels—A Critical Review
,”
Annu. Rev. Heat Transfer
,
13
(
13
), pp.
1
50
.
6.
Kandlikar
,
S. G.
,
Garimella
,
S.
,
Li
,
D.
,
Colin
,
S.
, and
King
,
M. R.
,
2014
,
Heat Transfer and Fluid Flow in Minichannels and Microchannels
,
Elsevier eBooks
,
Butterworth-Heinemann
. https://doi:10.1016/C2011-0-07521-X
7.
Steinke
,
M. E.
, and
Kandlikar
,
S. G.
,
2004
, “
Single-Phase Heat Transfer Enhancement Techniques in Microchannel and Minichannel Flows
,”
Proceedings of the Second International Conference on Microchannels and Minichannels (ICMM2004)
,
Rochester, NY
,
June 17–19
, pp.
141
148
.
8.
Zhai
,
Y.
,
Xia
,
G.
,
Liu
,
X.
, and
Li
,
Y. F.
,
2014
, “
Heat Transfer in the Microchannels With Fan-Shaped Reentrant Cavities and Different Ribs Based on Field Synergy Principle and Entropy Generation Analysis
,”
Int. J. Heat Mass Transfer
,
68
, pp.
224
233
.
9.
Ghaedamini
,
G. H.
,
Lee
,
P. S.
, and
Teo
,
C. J.
,
2013
, “
Developing Forced Convection in Converging–Diverging Microchannels
,”
Int. J. Heat Mass Transfer
,
65
, pp.
491
499
.
10.
Singh
,
P. K.
,
Tan
,
H. F. S.
,
Teo
,
C. J.
, and
Lee
,
P. S.
,
2013
, “
Flow and Heat Transfer in Branched Wavy Microchannels
,”
Int. Conf. Micro/Nanoscale Heat Transfer
,
36154
, p.
V001T11A002
.
11.
Fan
,
Y.
,
Lee
,
P. S.
,
Singh
,
P. K.
, and
Lee
,
Y. J.
,
2014
,
Planar Oblique Fin Microchannel Structure
,
Springer Briefs in Applied Sciences and Technology
,
Cham
, pp.
5
84
.
12.
Lee
,
Y. T.
,
Lin
,
W. H.
,
Dang
,
C.
, and
Yang
,
A. S.
,
2018
, “
Characterization of Twophase Flow Condensation Heat Transfer and Pressure Drop of Low GWP Refrigerant R1234yf
,”
Proceedings of the ACRA 2018—9th Asian Conference on Refrigeration and Air-Conditioning
,
Sapporo, Japan
,
June 10–13
.
13.
Rao
,
C. V. J.
,
2020
, “
Finite Element Analysis Technique to Roll Crimp Solenoid’s Can
,” SAE Technical Paper Series.
14.
Mohammadi
,
R.
, and
Shahkarami
,
N.
,
2022
, “
Performance Improvement of Rectangular Microchannel Heat Sinks Using Nanofluids and Wavy Channels
,”
Numer. Heat Transfer Part A: Appl.
,
82
(
10
), pp.
619
639
.
15.
Kanargi
,
O. B.
,
Lee
,
P. S.
, and
Yap
,
C.
,
2017
, “
A Numerical and Experimental Investigation of Heat Transfer and Fluid Flow Characteristics of a Cross-Connected Alternating Converging–Diverging Channel Heat Sink
,”
Int. J. Heat Mass Transfer
,
106
, pp.
449
464
.
16.
Alihosseini
,
Y.
,
Targhi
,
M. Z.
, and
Heyhat
,
M. M.
,
2021
, “
Thermo-Hydraulic Performance of Wavy Microchannel Heat Sink With Oblique Grooved Finned
,”
Appl. Therm. Eng.
,
189
, p.
116719
.
17.
Khoshvaght-Aliabadi
,
M.
,
Abbaszadeh
,
A.
, and
Rashidi
,
M. M.
,
2022
, “
Comparison of Co- and Counter-Current Modes of Operation for Wavy Minichannel Heat Sinks (WMHSs)
,”
Int. J. Therm. Sci.
,
171
, p.
107189
.
18.
Choi
,
S. U. S.
, and
Eastman
,
J. A.
,
1995
, “
Enhancing Thermal Conductivity of Fluids with Nanoparticles
,” Paper No. ANL/MSD/CP-84938; CONF-951135-29. Argonne National Lab.(ANL), Argonne, IL.
19.
Sajid
,
M. U.
, and
Ali
,
H. M.
,
2019
, “
Recent Advances in Application of Nanofluids in Heat Transfer Devices: A Critical Review
,”
Renew. Sustain. Energy Rev.
,
103
, pp.
556
592
.
20.
Sohel Murshed
,
S. M.
, and
Nieto de Castro
,
C. A.
,
2017
, “
A Critical Review of Traditional and Emerging Techniques and Fluids for Electronics Cooling
,”
Renew. Sustain. Energy Rev.
,
78
, pp.
821
833
.
21.
Ghani
,
I. A.
,
Kamaruzaman
,
N.
, and
Sidik
,
N. A. C.
,
2017
, “
Heat Transfer Augmentation in a Microchannel Heat Sink With Sinusoidal Cavities and Rectangular Ribs
,”
Int. J. Heat Mass Transfer
,
108
, pp.
1969
1981
.
22.
Tiwary
,
B.
,
Kumar
,
R.
,
Lee
,
P. S.
, and
Singh
,
P. K.
,
2019
, “
Numerical Investigation of Thermal and Hydraulic Performance in Novel Oblique Geometry Using Nanofluid
,”
Numer. Heat Transfer Part A: Appl.
,
76
(
7
), pp.
533
551
.
23.
Khoshvaght-Aliabadi
,
M.
,
Ahmadian
,
E.
, and
Sartipzadeh
,
O.
,
2017
, “
Effects of Different Pin-Fin Interruptions on Performance of a Nanofluid-Cooled Zigzag Miniature Heat Sink (MHS)
,”
Int. Commun. Heat Mass Transfer
,
81
, pp.
19
27
.
24.
Khoshvaght-Aliabadi
,
M.
,
Sartipzadeh
,
O.
,
Pazdar
,
S.
, and
Sahamiyan
,
M.
,
2017
, “
Experimental and Parametric Studies on a Miniature Heat Sink With Offset-Strip Pins and Al2O3/Water Nanofluids
,”
Appl. Therm. Eng.
,
111
, pp.
1342
1352
.
25.
Yan
,
W.
,
Li
,
C.
, and
Ye
,
W.
,
2019
, “
Numerical Investigation of Hydrodynamic and Heat Transfer Performances of Nanofluids in a Fractal Microchannel Heat Sink
,”
Heat Transfer
,
48
(
6
), pp.
2329
2349
.
26.
Hassani
,
S. M.
,
Khoshvaght-Aliabadi
,
M.
, and
Mazloumi
,
S. H.
,
2018
, “
Influence of Chevron Fin Interruption on Thermo-Fluidic Transport Characteristics of Nanofluid-Cooled Electronic Heat Sink
,”
Chem. Eng. Sci.
,
191
, pp.
436
447
.
27.
Khoshvaght-Aliabadi
,
M.
,
Hassani
,
S. M.
, and
Mazloumi
,
S. H.
,
2017
, “
Performance Enhancement of Straight and Wavy Miniature Heat Sinks Using Pin-Fin Interruptions and Nanofluids
,”
Chem. Eng. Process. Process Intensif.
,
122
, pp.
90
108
.
28.
Mohammadpour
,
J.
,
Lee
,
A.
,
Mozafari
,
M.
,
Zargarabadi
,
M. R.
, and
Mujumdar
,
A. S.
,
2021
, “
Evaluation of Al2O3-Water Nanofluid in a Microchannel Equipped With a Synthetic Jet Using Single-Phase and Eulerian–Lagrangian Models
,”
Int. J. Therm. Sci.
,
161
, p.
106705
.
29.
Saeed
,
M.
, and
Kim
,
M.-H.
,
2018
, “
Heat Transfer Enhancement Using Nanofluids (Al2O3-H2O) in Mini-Channel Heatsinks
,”
Int. J. Heat Mass Transfer
,
120
, pp.
671
682
.
30.
Ali
,
A. M.
,
Rona
,
A.
,
Kadhim
,
H. T.
,
Angelino
,
M.
, and
Gao
,
S.
,
2021
, “
Thermo-Hydraulic Performance of a Circular Microchannel Heat Sink Using Swirl Flow and Nanofluid
,”
Appl. Therm. Eng.
,
191
, p.
116817
.
31.
Sui
,
Y.
,
Teo
,
C. J.
,
Lee
,
P. S.
,
Chew
,
Y. T.
, and
Chen
,
S.
,
2010
, “
Fluid Flow and Heat Transfer in Wavy Microchannels
,”
Int. J. Heat Mass Transfer
,
53
(
13–14
), pp.
2760
2772
.
32.
Sui
,
Y.
,
Teo
,
C. J.
, and
Lee
,
P. S.
,
2012
, “
Direct Numerical Simulation of Fluid Flow and Heat Transfer in Periodic Wavy Channels With Rectangular Cross-Sections
,”
Int. J. Heat Mass Transfer
,
55
(
1–3
), pp.
73
88
.
33.
Sui
,
Y.
,
Lee
,
P. S.
, and
Teo
,
C. J.
,
2011
, “
An Experimental Study of Flow Friction and Heat Transfer in Wavy Microchannels With Rectangular Cross Section
,”
Int. J. Therm. Sci.
,
50
(
12
), pp.
2473
2482
.
34.
Rostami
,
J.
,
Abbassi
,
A.
, and
Harting
,
J.
,
2018
, “
Heat Transfer by Nanofluids in Wavy Microchannels
,”
Adv. Powder Technol.
,
29
(
4
), pp.
925
933
.
35.
Rostami
,
J.
,
Abbassi
,
A.
, and
Saffar-Avval
,
M.
,
2015
, “
Optimization of Conjugate Heat Transfer in Wavy Walls Microchannels
,”
Appl. Therm. Eng.
,
82
, pp.
318
328
.
36.
Sakanova
,
A.
,
Keian
,
C. C.
, and
Zhao
,
J.
,
2015
, “
Performance Improvements of Microchannel Heat Sink Using Wavy Channel and Nanofluids
,”
Int. J. Heat Mass Transfer
,
89
, pp.
59
74
.
37.
Xie
,
G.
,
Chen
,
Z.
,
Sundén
,
B.
, and
Zhang
,
W.
,
2013
, “
Comparative Study of the Flow and Thermal Performance of Liquid-Cooling Parallel-Flow and Counter-Flow Double-Layer Wavy Microchannel Heat Sinks
,”
Numer. Heat Transfer Part A: Appl.
,
64
(
1
), pp.
30
55
.
38.
Lin
,
L.
,
Zhao
,
J.
,
Lu
,
G.
,
Wang
,
X.
, and
Yan
,
W.
,
2017
, “
Heat Transfer Enhancement in Microchannel Heat Sink by Wavy Channel With Changing Wavelength/Amplitude
,”
Int. J. Therm. Sci.
,
118
, pp.
423
434
.
39.
Lu
,
G.
,
Zhao
,
J.
,
Lin
,
L.
,
Wang
,
X.
, and
Yan
,
W.
,
2017
, “
A New Scheme for Reducing Pressure Drop and Thermal Resistance Simultaneously in Microchannel Heat Sinks With Wavy Porous Fins
,”
Int. J. Heat Mass Transfer
,
111
, pp.
1071
1078
.
40.
Shen
,
H.
,
Zhang
,
Y.
,
Wang
,
C.-C.
, and
Xie
,
G.
,
2018
, “
Comparative Study for Convective Heat Transfer of Counter-Flow Wavy Double-Layer Microchannel Heat Sinks in Staggered Arrangement
,”
Appl. Therm. Eng.
,
137
, pp.
228
237
.
41.
Singh
,
P. K.
,
Samuel
,
T. H. F.
,
Juay
,
T. C.
, and
Seng
,
L. P.
,
2013
, “
Flow and Heat Transfer in Branched Wavy Microchannels
,”
ASME 2013 4th International Conference on Micro/Nanoscale Heat and Mass Transfer, MNHMT 2013
,
Hong Kong, China
,
Dec. 11–14
.
42.
Chiam
,
Z. L.
,
Lee
,
P. S.
,
Singh
,
P. K.
, and
Mou
,
N.
,
2016
, “
Investigation of Fluid Flow and Heat Transfer in Wavy Micro-Channels With Alternating Secondary Branches
,”
Int. J. Heat Mass Transfer
,
101
, pp.
1316
1330
.
43.
Nemati
,
H.
,
Moghimi
,
M. A.
, and
Meyer
,
J. P.
,
2021
, “
Shape Optimisation of Wavy Mini-Channel Heat Sink
,”
Int. Commun. Heat Mass Transfer
,
122
, p.
105172
.
44.
Huang
,
C.-H.
, and
Tung
,
P.-W.
,
2020
, “
Numerical and Experimental Studies on an Optimum Fin Design Problem to Determine the Deformed Wavy-Shaped Heat Sinks
,”
Int. J. Therm. Sci.
,
151
, p.
106282
.
45.
Kumar
,
R.
,
Tiwary
,
B.
, and
Singh
,
P. K.
,
2021
, “
Influence of Secondary Pass Location on Thermo-Fluidic Characteristic on the Novel Air-Cooled Branched Wavy Minichannel Heat Sink: A Comprehensive Numerical and Experimental Analysis
,”
Appl. Therm. Eng.
,
182
, p.
115994
.
46.
Kumar
,
R.
,
Tiwary
,
B.
, and
Singh
,
P. K.
,
2022
, “
Thermofluidic Analysis of Al2O3-Water Nanofluid Cooled Branched Wavy Heat Sink
,”
Appl. Therm. Eng.
,
201
, p.
117787
.
47.
Schilling
,
Paul J.
, and
Shih
,
Randy H.
,
2020
,
Parametric Modeling With SOLIDWORKS 2020
,
SDC Publications
,
Mission, KS
.
48.
Shankar
,
P. N.
, and
Deshpande
,
M. D.
,
2000
, “
Fluid Mechanics in the Driven Cavity
,”
Annu. Rev. Fluid Mech.
,
32
(
1
), pp.
93
136
.
49.
Inc., A.
,
2016
,
ANSYS Fluent Theory Guide V17.1
,
ANSYS 17.1 Doc
,
Canonsburg, PA
.
50.
Kanargi
,
O. B.
,
Lee
,
P. S.
, and
Yap
,
C.
,
2018
, “
A Numerical and Experimental Investigation of Heat Transfer and Fluid Flow Characteristics of an Air-Cooled Finned Heat Sink
,”
Int. J. Heat Mass Transfer
,
116
, pp.
393
416
.
51.
Tiwary
,
B.
,
Kumar
,
R.
, and
Singh
,
P. K.
,
2022
, “
Thermofluidic Characteristic of a Nanofluid-Cooled Oblique Fin Heat Sink: An Experimental and Numerical Investigation
,”
Int. J. Therm. Sci.
,
171
, p.
107214
.
52.
Tiwary
,
B.
,
Kumar
,
R.
, and
Singh
,
P. K.
,
2022
, “
Influence of Oblique Angle Variations on the Thermo-Hydraulic Characteristics of the Oblique Fin Heat Sink With Al2O3 Water Nanofluid
,”
Numer. Heat Transf. Part A: Appl.
,
84
(
5
), pp.
413
432
.
53.
Yakhot
,
V.
, and
Smith
,
L. M.
,
1992
, “
The Renormalization Group, the ɛ-Expansion and Derivation of Turbulence Models
,”
J. Sci. Comput.
,
7
(
1992
), pp.
35
61
.
54.
Yadav
,
D.
,
Kumar
,
R.
,
Tiwary
,
B.
, and
Singh
,
P. K.
,
2020
, “
Rheological Characteristics of CeO2, Al2O3 and Their Hybrid Mixture in Ethylene Glycol Base Fluid in the Wide Range of Temperature and Concentration
,”
J. Therm. Anal. Calorim.
,
143
(
2
), pp.
1003
1019
.
55.
Tiwary
,
B.
,
Kumar
,
R.
, and
Singh
,
P. K.
,
2019
, “
Heat Transfer Enhancement in Oblique Finned Channel
,”
Lecture Notes Mech. Eng.
, pp.
157
167
.
56.
Hamilton
,
R.
, and
Crosser
,
O. K.
,
1962
, “
Thermal Conductivity of Heterogeneous Two-Component Systems
,”
Ind. Eng. Chem. Fundam.
,
1
(
3
), pp.
187
191
.
57.
Singh
,
P. K.
,
Harikrishna
,
P.
,
Sundararajan
,
T.
, and
Das
,
S. K.
,
2012
, “
Experimental and Numerical Investigation Into the Hydrodynamics of Nanofluids in Microchannels
,”
Exp. Therm. Fluid. Sci.
,
42
, pp.
174
186
.
58.
Singh
,
P. K.
,
Anoop
,
K. B.
,
Sundararajan
,
T.
, and
Das
,
S. K.
,
2010
, “
Entropy Generation Due to Flow and Heat Transfer in Nanofluids
,”
Int. J. Heat Mass Transfer
,
53
(
21–22
), pp.
4757
4767
.
59.
Xuan
,
Y.
, and
Roetzel
,
W.
,
2000
, “
Conceptions for Heat Transfer Correlation of Nanofluids
,”
Int. J. Heat Mass Transfer
,
43
(
19
), pp.
3701
3707
.
60.
Kanargi
,
O. B.
,
Tan
,
J. M. S.
,
Lee
,
P. S.
, and
Yap
,
C.
,
2020
, “
A Tapered Inlet/Outlet Flow Manifold for Planar, Air-Cooled Oblique-Finned Heat Sink
,”
Appl. Therm. Eng.
,
174
, p.
115250
.
You do not currently have access to this content.