Abstract

Geothermal energy is a clean and renewable energy source that can effectively reduce carbon emissions. Coaxial borehole heat exchanger (CBHE) is a crucial component of the geothermal mining system. To understand the heat transfer mechanism of a CBHE and to design its construction, this paper analyzes the geotechnical thermal response characteristics of CBHE under constant power conditions. comsol was used to simulate the performance of the heat exchanger during intermittent operation in both summer and winter. The results indicate that the inlet water temperature and the thermal conductivity of the grouting material have a weak impact on the energy efficiency coefficient of the heat exchanger. The energy efficiency coefficient can increase by about 22% when the inner pipe's thermal conductivity is low. The temperature difference between the medium flowing into the inner pipe at the bottom of a shallow-cased buried pipe and the medium flowing out of the inner pipe defines the thermal short-circuit value. The influence on the thermal short-circuit value is on the order of the inner pipe thermal conductivity, grouting material thermal conductivity, and the inlet water temperature. The fluctuation of soil temperature in the summer is greater than that in the winter, and the soil temperature of shallow-buried pipes is easier to recover in the winter. The characteristic law obtained in this paper provides a valuable reference for the scientific design of CBHE.

References

1.
Soeder
,
D. J.
,
2021
, “Fossil Fuels and Climate Change,”
Fracking and the Environment
,
Springer
,
New York
, pp.
155
185
.
2.
Hess
,
D. J.
, and
Renner
,
M.
,
2019
, “
Conservative Political Parties and Energy Transitions in Europe: Opposition to Climate Mitigation Policies
,”
Renewable Sustainable Energy Rev.
,
104
, pp.
419
428
.
3.
Chen
,
S.
,
Zhang
,
Q.
,
Andrews-Speed
,
P.
, and
Mclellan
,
B.
,
2020
, “
Quantitative Assessment of the Environmental Risks of Geothermal Energy: A Review
,”
J. Environ. Manage.
,
276
, p.
111287
.
4.
Ahmadi
,
M. H.
,
Banihashem
,
S. A.
,
Ghazvini
,
M.
, and
Sadeghzadeh
,
M.
,
2018
, “
Thermo-Economic and Exergy Assessment and Optimization of Performance of a Hydrogen Production System by Using Geothermal Energy
,”
Energy Environ.
,
29
(
8
), pp.
1373
1392
.
5.
Khandouzi
,
O.
,
Pourfallah
,
M.
,
Yoosefirad
,
E.
,
Shaker
,
B.
,
Gholinia
,
M.
, and
Mouloodi
,
S.
,
2021
, “
Evaluating and Optimizing the Geometry of Thermal Foundation Pipes for the Utilization of the Geothermal Energy: Numerical Simulation
,”
J. Energy Storage
,
37
, p.
102464
.
6.
Ghazvini
,
M.
,
Sadeghzadeh
,
M.
,
Ahmadi
,
M. H.
,
Moosavi
,
S.
, and
Pourfayaz
,
F.
,
2019
, “
Geothermal Energy Use in Hydrogen Production: A Review
,”
Int. J. Energy Res.
,
43
(
14
), pp.
7823
7851
.
7.
Chen
,
J.
,
Chen
,
H.
,
Zhao
,
R.
,
Song
,
J. L.
,
Nian
,
Y. L.
, and
Cheng
,
W. L.
,
2023
, “
Experimental Study on the Heat Transfer Characteristics of Supercritical Carbon Dioxide in Spiral Tube With High Pitch to Spiral Diameter Ratio
,”
Int. J. Heat Mass Transfer
,
217
, p.
124694
.
8.
Florides
,
G.
, and
Kalogirou
,
S.
,
2007
, “
Ground Heat Exchangers – A Review of Systems, Models and Applications
,”
Renewable Energy
,
32
(
15
), pp.
2461
2478
.
9.
Javadi
,
H.
,
Ajarostaghi
,
S. S. M.
,
Pourfallah
,
M.
, and
Zaboli
,
M.
,
2019
, “
Performance Analysis of Helical Ground Heat Exchangers With Different Configurations
,”
Appl. Therm. Eng.
,
154
, pp.
24
36
.
10.
Zayed
,
M. E.
,
Shboul
,
B.
,
Yin
,
H.
,
Zhao
,
J.
, and
Zayed
,
A. A.
,
2023
, “
Recent Advances in Geothermal Energy Reservoirs Modeling: Challenges and Potential of Thermo-Fluid Integrated Models for Reservoir Heat Extraction and Geothermal Energy Piles Design
,”
J. Energy Storage
,
62
, p.
106835
.
11.
Turgut
,
E.
, and
Yardımcı
,
U.
,
2022
, “
Comprehensive Analysis of the Performance of the Coaxial Heat Exchanger With Turbulators
,”
Int. J. Therm. Sci.
,
176
, p.
107502
.
12.
Žirgulis
,
G.
,
Javadi
,
H.
,
Chaudhari
,
O. A.
,
Ghafar
,
A. N.
,
Fontana
,
P.
,
Sanner
,
B.
,
Urchueguía
,
J. F.
,
Badenes
,
B.
,
Castell
,
J. M. C.
, and
Shuster
,
M.
,
2023
, “
Temperature Evolution Around Four Laboratory-Scale Borehole Heat Exchangers Grouted With Phase Change Materials Subjected to Heating–Cooling Cycles: An Experimental Study
,”
J. Energy Storage
,
74
, p.
109302
.
13.
Li
,
M.
, and
Lai
,
A. C.
,
2015
, “
Review of Analytical Models for Heat Transfer by Vertical Ground Heat Exchangers (GHEs): A Perspective of Time and Space Scales
,”
Appl. Energy
,
151
, pp.
178
191
.
14.
Carslaw
,
H. S.
, and
Jeager
,
C.
,
1946
,
Conduction of Heat in Solids
,
Oxford University Press
,
Oxford, UK
.
15.
Ingersoll
,
L. R.
,
Zobel
,
O. J.
, and
Ingersoll
,
A. C.
,
1954
,
Heat Conduction With Engineering, Geological, and Other Applications
,
University of Wisconsin Press
,
Madison, WI
.
16.
Lee
,
C. K.
, and
Lam
,
H. N.
,
2012
, “
A Modified Multi-Ground-Layer Model for Borehole Ground Heat Exchangers With an Inhomogeneous Groundwater Flow
,”
Energy
,
47
(
1
), pp.
378
387
.
17.
Deerman
,
J. D.
,
1990
, “
Simulation of Vertical U-Tube Ground-Coupled Heat Pump Systems Using the Cylindrical Heat Source Solution
,”
ASHRAE Trans.
,
97
, pp.
287
295
.
18.
Kavanaugh
,
S. P.
,
1985
,
Simulation and Experimental Verification of Vertical Ground-Coupled Heat Pump Systems (Closed Loop)
,
Oklahoma State University
,
Stillwater, OK
.
19.
Bandyopadhyay
,
G.
,
Gosnold
,
W.
, and
Mann
,
M.
,
2008
, “
Analytical and Semi-Analytical Solutions for Short-Time Transient Response of Ground Heat Exchangers
,”
Energy Build.
,
40
(
10
), pp.
1816
1824
.
20.
Hellström
,
G.
,
1991
,
Ground Heat Storage: Thermal Analyses of Duct Storage Systems
,
Lund University
,
Lund, Sweden
.
21.
Bauer
,
D.
,
Heidemann
,
W.
,
Müller-Steinhagen
,
H.
, and
Diersch
,
H.-J. G.
,
2011
, “
Thermal Resistance and Capacity Models for Borehole Heat Exchangers
,”
Int. J. Energy Res.
,
35
(
4
), pp.
312
320
.
22.
Pasquier
,
P.
, and
Marcotte
,
D.
,
2012
, “
Short-Term Simulation of Ground Heat Exchanger With an Improved TRCM
,”
Renewable Energy
,
46
, pp.
92
99
.
23.
De Carli
,
M.
,
Tonon
,
M.
,
Zarrella
,
A.
, and
Zecchin
,
R.
,
2010
, “
A Computational Capacity Resistance Model (CaRM) for Vertical Ground-Coupled Heat Exchangers
,”
Renewable Energy
,
35
(
7
), pp.
1537
1550
.
24.
Zarrella
,
A.
,
Scarpa
,
M.
, and
De Carli
,
M.
,
2011
, “
Short Time Step Analysis of Vertical Ground-Coupled Heat Exchangers: The Approach of CaRM
,”
Renewable Energy
,
36
(
9
), pp.
2357
2367
.
25.
Bauer
,
D.
,
Heidemann
,
W.
, and
Diersch
,
H.-J. G.
,
2011
, “
Transient 3D Analysis of Borehole Heat Exchanger Modeling
,”
Geothermics
,
40
(
4
), pp.
250
260
.
26.
Funabiki
,
A.
, and
Oguma
,
M.
,
2017
, “
Effects of Groundwater Flow on a Ground Source Heat Pump System
,”
ASME J. Therm. Sci. Eng. Appl.
,
9
(
2
), p.
021008
.
27.
Jia
,
L. R.
,
Cui
,
P.
,
Liu
,
Y.
,
Lu
,
L.
, and
Fang
,
Z. H.
,
2023
, “
Analytical Heat Transfer Model for Coaxial Heat Exchangers Based on Varied Heat Flux With Borehole Depth
,”
Appl. Therm. Eng.
,
218
, p.
119317
.
28.
Li
,
G. C.
,
Yang
,
J. Z.
,
Zhu
,
X. W.
, and
Shen
,
Z. H.
,
2021
, “
Numerical Study on the Heat Transfer Performance of Coaxial Shallow Borehole Heat Exchanger
,”
Energy Environ.
,
2
(
4
), pp.
445
455
.
29.
Akhmadullin
,
I.
, and
Kartushinsky
,
A.
,
2021
, “
CFD Simulation of Bubbly Flow in a Long Coaxial Heat Exchanger
,”
Therm. Sci. Eng. Prog.
,
25
, p.
100991
.
30.
Iry
,
S.
, and
Rafee
,
R.
,
2019
, “
Transient Numerical Simulation of the Coaxial Borehole Heat Exchanger With the Different Diameters Ratio
,”
Geothermics
,
77
, pp.
158
165
.
31.
Angelotti
,
A.
,
Alberti
,
L.
,
La Licata
,
I.
, and
Antelmi
,
M.
,
2014
, “
Energy Performance and Thermal Impact of a Borehole Heat Exchanger in a Sandy Aquifer: Influence of the Groundwater Velocity
,”
Energy Convers. Manage.
,
77
, pp.
700
708
.
32.
Zanchini
,
E.
,
Lazzari
,
S.
, and
Priarone
,
A.
,
2012
, “
Long-Term Performance of Large Borehole Heat Exchanger Fields With Unbalanced Seasonal Loads and Groundwater Flow
,”
Energy
,
38
(
1
), pp.
66
77
.
33.
Brunetti
,
G.
,
Saito
,
H.
,
Saito
,
T.
, and
Šimůnek
,
J.
,
2017
, “
A Computationally Efficient Pseudo-3D Model for the Numerical Analysis of Borehole Heat Exchangers
,”
Appl. Energy
,
208
, pp.
1113
1127
.
34.
Piga
,
B.
,
Casasso
,
A.
,
Pace
,
F.
,
Godio
,
A.
, and
Sethi
,
R.
,
2017
, “
Thermal Impact Assessment of Groundwater Heat Pumps (GWHPs): Rigorous Vs Simplified Models
,”
Energies
,
10
(
9
), p.
1385
.
35.
Roque
,
B. T.
,
Pablo
,
P. M.
,
Daniel
,
C. F.
,
Juan
,
J.
, and
Del
,
C. D.
,
2013
, “
Study of Different Grouting Materials Used in Vertical Geothermal Closed-Loop Heat Exchangers
,”
Appl. Therm. Eng.
,
50
(
1
), pp.
159
167
.
36.
Yang
,
W. B.
,
Xu
,
R.
,
Yang
,
B. B.
, and
Yang
,
J. J.
,
2019
, “
Experimental and Numerical Investigations on the Thermal Performance of a Borehole Ground Heat Exchanger With PCM Backfill
,”
Energy
,
174
, pp.
216
235
.
37.
Li
,
M.
, and
Lai
,
A. C.
,
2012
, “
New Temperature Response Functions (G Functions) for Pile and Borehole Ground Heat Exchangers Based on Composite-Medium Line-Source Theory
,”
Energy
,
38
(
1
), pp.
255
263
.
38.
Zanchini
,
E.
,
Lazzari
,
S.
, and
Priarone
,
A.
,
2010
, “
Effects of Flow Direction and Thermal Short-Circuiting on the Performance of Small Coaxial Ground Heat Exchangers
,”
Renewable Energy
,
35
(
6
), pp.
1255
1265
.
39.
Gnielinski
,
V.
,
1975
, “New Equations for Heat and Mass Transfer in the Turbulent Flow in Pipes and Channels,” NASA STI/RECON Technical Report A, pp.
8
16
.
You do not currently have access to this content.