The hydrodynamics of a fuel reactor in a chemical looping combustion (CLC) system is analyzed by using a multiphase two-dimensional computational fluid dynamics (CFD) model that involves solid–gas interactions and chemical reactions. The study compares the fuel reactors of two CLC systems numerically by using hydrogen with calcium sulfide as an oxygen carrier, and methane with nickel as an oxygen carrier in similar conditions. Kinetic theory of granular flow has been adopted. The model considers the conservation equations of mass, momentum and species, and reaction kinetics of oxygen carriers. The results obtained are in good agreement with the experimental and numerical results available in open literature. The bubble hydrodynamics in both the fuel reactors are analyzed. The salient features of the bubble formation, rise, and burst are more prominent in the hydrogen-fueled reactor as compared to the methane-fueled reactor. The fuel conversion rate is found to be larger for the hydrogen-fueled reactor.

References

1.
Johansson
,
E.
,
Mattisson
,
T.
,
Lyngfelt
,
A.
, and
Thunman
,
H.
,
2006
, “
A 300 W Laboratory Reactor System for Chemical-Looping Combustion With Particle Circulation
,”
Fuel
,
85
, pp.
1428
1438
.10.1016/j.fuel.2006.01.010
2.
Ryu
,
H. J.
,
Bae
,
D. H.
,
Han
,
K. H.
,
Lee
,
S. Y.
,
Jin
,
G. T.
, and
Choi
,
J. H.
,
2001
, “
Oxidation and Reduction Characteristics of Oxygen Carrier Particles and Reaction Kinetics by Unreacted Core Model
,”
Korean J. Chem. Eng.
,
18
, pp.
831
837
.10.1007/BF02705604
3.
Ishida
,
M.
,
Yamamoto
,
M.
, and
Ohba
,
T.
,
2002
, “
Experimental Results of Chemical Looping Combustion With NiO/NiAl2O4 Particle Circulation at 1200 °C
,”
Energy Convers. Manage.
,
43
, pp.
1469
1478
.10.1016/S0196-8904(02)00029-8
4.
Hassan
,
B.
,
Shamim
,
T.
, and
Ghoniem
,
A. F.
,
2012
, “
A Parametric Study of Multi-Stage Chemical Looping Combustion for CO2 Capture Power Plant
,”
Proceedings of the ASME Summer Heat Transfer Conference
,
Puerto Rico
, July 8–12, Paper No. ASME2012-58597.
5.
Hassan
,
B.
, and
Shamim
,
T.
,
2013
, “
Parametric and Exergetic Analysis of a Power Plant With CO2 and Capture Using Chemical Looping Combustion
,”
Int. Proc. Chem., Biol. Environ. Eng.
,
27
, pp.
57
61
.
6.
Mattisson
,
T.
,
Johansson
,
M.
, and
Lyngfelt
,
A.
,
2004
, “
Multicycle Reduction and Oxidation of Different Types of Iron Oxide Particles—Application to Chemical Looping Combustion
,”
Energy Fuels
,
18
, pp.
628
637
.10.1021/ef0301405
7.
Dennis
,
J. S.
, and
Scott
,
S. A.
,
2010
, “
In Situ Gasification of a Lignite Coal and CO2 Separation Using Chemical Looping With a Cu-Based Oxygen Carrier
,”
Fuel
,
7
(
89
), pp.
1623
1640
.10.1016/j.fuel.2009.08.019
8.
Mahalatkar
,
K.
,
Kuhlman
,
J.
,
Huckaby
,
E. D.
, and
O'Brien
,
T.
,
2011
, “
Computational Fluid Dynamic Simulation of Chemical Looping Fuel Reactors Utilizing Gaseous Fuels
,”
Chem. Eng. Sci.
,
66
, pp.
469
479
.10.1016/j.ces.2010.11.003
9.
Moldenhauer
,
P.
,
Ryden
,
M.
,
Mattisson
,
T.
, and
Lyngfelt
,
A.
,
2012
, “
Chemical-Looping Combustion and Chemical-Looping Reforming of Kerosene in a Circulating Fluidized Bed 300 W Laboratory Reactor
,”
Int. J. Greenhouse Gas Control
,
9
, pp.
1
9
.10.1016/j.ijggc.2012.02.015
10.
Jin
,
H.
, and
Ishida
,
M.
,
2000
, “
A Novel Gas Turbine Cycle With Hydrogen-Fueled Chemical-Looping Combustion
,”
Int. J. Hydrogen Energy
,
25
, pp.
1209
1215
.10.1016/S0360-3199(00)00032-X
11.
Jin
,
H.
, and
Ishida
,
M.
,
2001
, “
Reactivity Study on a Novel Hydrogen-Fueled Chemical Looping Combustion
,”
Int. J. Hydrogen Energy
,
26
, pp.
889
894
.10.1016/S0360-3199(01)00015-5
12.
Drew
,
D. A.
, and
Passman
,
S. L.
,
1999
, “
Theory of Multicomponent Fluids
,”
Appl. Math. Sci.
,
135
, pp.
1
310
.10.1007/b97678
13.
Patil
,
D. J.
,
Annaland
,
M. S.
, and
Kuipers
,
J. A. M.
,
2005
, “
Critical Comparison of Hydrodynamic Models for Gas-Solid Fluidized Beds-Part I: Bubbling Gas-Solid Fluidized Beds Operated With a Jet
,”
Chem. Eng. Sci.
,
60
, pp.
57
72
.10.1016/j.ces.2004.07.059
14.
Gunn
,
D. J.
,
1978
, “
Transfer of Heat or Mass to Particles in Fixed and Fluidized Beds
,”
Int. J. Heat Mass Transfer
,
21
, pp.
467
476
.10.1016/0017-9310(78)90080-7
15.
Wen
,
C. Y.
, and
Yu
,
H. Y.
,
1966
, “
Mechanics of Fluidization
,”
Chem. Eng. Prog. Symp. Ser.
,
62
, pp.
100
111
.
16.
Syamlal
,
M.
, and
O'Brien
,
T. J.
,
1989
, “
Computer Simulation of Bubbles in a Fluidized Bed
,”
AlChE Symp. Ser.
,
85
, pp.
22
31
.
17.
Garside
,
J.
, and
Al-Dibouni
,
M. R.
,
1977
, “
Velocity-Voidage Relationships for Fluidization and Sedimentation
,”
Ind. Eng. Chem. Process Des. Dev.
,
16
, pp.
206
214
.10.1021/i260062a008
18.
Ogama
,
S.
,
Umemura
,
A.
, and
Oshima
,
N.
,
1980
, “
On the Equation of Fully Fluidized Granular Materials
,”
J. Appl. Math. Phys.
,
31
, pp.
483
–493.10.1007/BF01590859
19.
Syamlal
,
M.
,
Rogers
,
W.
, and
O'Brien
,
T. J.
,
1993
, “
MFIX Documentation Theory Guide
,” Technical Note, DOE/METC-94/10004, NTIS/DE94000087, US Department of Energy, Office of Fossil Energy, Morgantown Energy Technology Centre, Morgantown, WV, National Technical Service, Springfield, VA.
20.
Gidaspow
,
D.
,
Bezburuah
,
R.
, and
Ding
,
J.
,
1992
, “
Hydrodynamics of Circulating Fluidized Beds, Kinetic Theory Approach
,”
Fluidization VII, Proceedings of the 7th Engineering Foundation Conference on Fluidization
, Brisbane, Australia, May 3–8, pp.
75
82
.
21.
Lun
,
C. K. K.
,
Savage
,
S. B.
,
Jeffrey
,
D. J.
, and
Chepurniy
,
N.
,
1984
, “
Kinetic Theories for Granular Flow: Inelastic Particles in Couette Flow and Slightly Inelastic Particles in a General Flow Field
,”
J. Fluid Mech.
,
140
, pp.
223
256
.10.1017/S0022112084000586
22.
Bysung-Su
,
K.
, and
Hong Yong
,
S.
,
2002
., “
A Novel Cyclic Reaction System Involving CaS and CaSO4 for Converting Sulfur Dioxide to Elemental Sulfur Without Generating Secondary Pollutants: Kinetic of the Hydrogen Reduction of the Calcium Sulfate Powder to Calcium Sulfide
,”
Ind. Eng. Chem. Res.
,
41
, pp.
3092
3096
.10.1021/ie010995+
23.
Zafar
,
Q.
,
Abad
,
A.
,
Mattisson
,
T.
, and
Gevert
,
B.
,
2007
, “
Reaction Kinetics of Freeze Granulated NiO/MgAl2O4 Oxygen Carrier Particles for Chemical-Looping Combustion
,”
Energy Fuels
,
21
, pp.
610
618
.10.1021/ef060450y
24.
Deng
,
Z.
,
Xiao
,
R.
,
Jin
,
B.
, and
Song
,
Q.
,
2009
, “
Numerical Simulation of Chemical Looping Combustion Process With CaSO4 Oxygen Carrier
,”
Int. J. Greenhouse Gas Control
,
3
, pp.
368
375
.10.1016/j.ijggc.2008.11.004
25.
Alizadeh
,
R.
,
Jamshidi
,
E.
, and
Ebrahim Ale
,
H.
,
2007
, “
Kinetic Study of Nickel Oxide Reduction by Methane
,”
Chem. Eng. Technol.
,
30
(
8
), pp.
1123
1128
.10.1002/ceat.200700067
26.
Vasquez
,
S. A.
, and
Ivanov
,
V. A.
,
2000
, “
A Phase Couple Method for Solving Multiphase Problems on Unstructured Meshes
,”
Proceedings of ASME FEDSM’00: ASME 2000 Fluid Engineering Division Summer Meeting
,
Boston, MA, June 11–15
.
27.
Gelderbloom
,
S. J.
,
Gidaspow
,
D.
, and
Lyczkowski
,
R. W.
,
2003
, “
CFD Simulations of Bubbling/Collapsing Fluidized Beds for Three Geldart Groups
,”
AlChE J.
,
49
, pp.
844
858
.10.1002/aic.690490405
28.
Adanez
,
J.
,
de Diego
,
L. F.
,
Garcia-Labiano
,
F.
,
Gayan
,
P.
,
Abad
,
A.
, and
Palacios
,
J. M.
,
2004
, “
Selection of Oxygen Carriers for Chemical Looping Combustion
,”
Energy Fuels
,
18
, pp.
371
377
.10.1021/ef0301452
29.
Jung
,
J.
, and
Gamwo
, I
. K.
,
2008
, “
Multiphase CFD Based Models for Chemical Looping Combustion Process: Fuel Reactor Modeling
,”
Powder Technol.
,
183
, pp.
401
409
.10.1016/j.powtec.2008.01.019
30.
Shuai
,
W.
,
Yunchao
,
Y.
,
Huilin
,
L.
,
Jiaxing
,
W.
,
Pengfei
,
X.
, and
Guodong
,
L.
,
2011
, “
Hydrodynamic Simulation of Fuel-Reactor in Chemical-Looping Process
,”
Chem. Eng. Res. Des.
,
89
, pp.
1501
1510
.10.1016/j.cherd.2010.11.002
31.
Wolf
,
J.
,
Anheden
,
M.
, and
Yan
,
J.
,
2005
, “
Comparison of Nickel- and Iron-Based Oxygen Carriers in Chemical Looping Combustion for CO2 Capture in Power Generation
,”
Fuel
,
84
, pp.
993
1006
.10.1016/j.fuel.2004.12.016
You do not currently have access to this content.