Laminar mixed convection in a two-dimensional shallow inclined lid-driven cavity is investigated numerically. The moving cavity lid at the top is isothermally hot and the bottom is isothermally cold while the two sidewalls are insulated. The cavity aspect ratio is taken as 10. The fluid medium consists of a mixture of pure water and copper nanoparticles with volumetric concentrations of 5% and 8%. The flow Richardson number is varied from 0.1 to 10, and the cavity inclination is varied from 0 deg to 30 deg. It is found that, at any specific nanoparticle concentration, the average Nusselt number increases mildly with cavity inclination for the forced convection dominated case (Ri = 0.1) while it increases much more rapidly with inclination for natural convection dominated case (Ri = 10). Also the average Nusselt number has significant increasing trend with increasing concentration of the nanoparticles.

References

1.
Pilkington
,
L. A. B.
,
1969
, “
Float Glass Process
,”
Proc. R. Soc. London, Ser. A
,
314
(
1516
), pp.
1
25
.
2.
Imberger
,
J.
, and
Hamblin
,
P.
,
1982
, “
Dynamics of Lakes, Reservoirs, and Cooling Ponds
,”
Ann. Rev. Fluid Mech.
,
14
, pp.
153
187
.
3.
Cha
,
C.
, and
Jaluria
,
Y.
,
1984
, “
Recirculating Mixed Convection Flow for Energy Extraction
,”
Int. J. Heat Mass Transfer
,
27
(
10
), pp.
1801
1812
.
4.
Roy
,
B.
,
1992
,
Crystal Growth From Melts Applications to Growth of Groups 1 and 2 Crystals
,
Wiley
,
New York
.
5.
Jaluria
,
Y.
,
2001
, “
Fluid Flow Phenomena in Materials Processing—The 2000 Freeman Scholar Lecture
,”
ASME J. Fluids Eng.
,
123
(
2
), pp.
173
210
.
6.
Torrance
,
K.
,
Zien
,
H.
, and
Davis
,
R.
,
1972
, “
Cavity Flows Driven by Buoyancy and Shear
,”
Journal of Fluid Mechanics
,
51
(
JAN25
), pp.
221
231
.
7.
Moallemi
,
M.
, and
Jang
,
K.
,
1992
, “
Prandtl Number Effects on Laminar Mixed Convection Heat-Transfer in a Lid-Driven Cavity
,”
Int. J. Heat Mass Transfer
,
35
(
8
), pp.
1881
1892
.
8.
Mohamad
,
A. A.
, and
Viskanta
,
R.
,
1992
, “
Laminar-Flow and Heat-Transfer in Rayleigh–Benard Convection With Shear
,”
Phys. Fluids A
,
4
(
10
), pp.
2131
2140
.
9.
Mohamad
,
A.
, and
Viskanta
,
R.
,
1994
, “
Flow Structures and Heat-Transfer in a Lid-Driven Cavity Filled With Liquid Gallium and Heated From Below
,”
Exp. Therm. Fluid Sci.
,
9
(
3
), pp.
309
319
.
10.
Mansour
,
R. B.
, and
Viskanta
,
R.
,
1994
, “
Shear-Opposed Mixed Convection Flow and Heat-Transfer in a Narrow, Vertical-Cavity
,”
Int. J. Heat Fluid Flow
,
15
(
6
), pp.
462
469
.
11.
Iwatsu
,
R.
,
Hyun
,
J.
, and
Kuwahara
,
K.
,
1993
, “
Mixed Convection in a Driven Cavity With a Stable Vertical Temperature-Gradient
,”
Int. J. Heat Mass Transfer
,
36
(
6
), pp.
1601
1608
.
12.
Iwatsu
,
R.
, and
Hyun
,
J.
,
1995
, “
Three-Dimensional Driven-Cavity Flows With a Vertical Temperature-Gradient
,”
Int. J. Heat Mass Transfer
,
38
(
18
), pp.
3319
3328
.
13.
Mohamad
,
A.
, and
Viskanta
,
R.
,
1995
, “
Flow and Heat-Transfer in a Lid-Driven Cavity Filled With a Stably Stratified Fluid
,”
Appl. Math. Modell.
,
19
(
8
), pp.
465
472
.
14.
Prasad
,
A.
, and
Koseff
,
J.
,
1996
, “
Combined Forced and Natural Convection Heat Transfer in a Deep Lid Driven Cavity Flow
,”
Int. J. Heat Fluid Flow
,
17
(
5
), pp.
460
467
.
15.
Lee
,
S. C.
, and
Chen
,
C. K.
,
1996
, “
Finite Element Solutions of Laminar and Turbulent Mixed Convection in a Driven Cavity
,”
Int. J. Numer. Methods Fluids
,
23
(
1
), pp.
47
64
.
16.
Alleborn
,
N.
,
Raszillier
,
H.
, and
Durst
,
F.
,
1999
, “
Lid-Driven Cavity With Heat and Mass Transport
,”
Int. J. Heat Mass Transfer
,
42
(
5
), pp.
833
853
.
17.
Chamkha
,
A.
, and
Al-Naser
,
H.
,
2001
, “
Double-Diffusive Convection in an Inclined Porous Enclosure With Opposing Temperature and Concentration Gradients
,”
Int. J. Therm. Sci.
,
40
(
3
), pp.
227
244
.
18.
Chamkha
,
A.
,
2002
, “
Hydromagnetic Combined Convection Flow in a Vertical Lid-Driven Cavity With Internal Heat Generation or Absorption
,”
Numer. Heat Transfer, Part A
,
41
(
5
), pp.
529
546
.
19.
Shankar
,
P.
,
Meleshko
,
V.
, and
Nikiforovich
,
E.
,
2002
, “
Slow Mixed Convection in Rectangular Containers
,”
J. Fluid Mech.
,
471
, pp.
203
217
.
20.
Oztop
,
H.
, and
Dagtekin
,
I.
,
2004
, “
Mixed Convection in Two-Sided Lid-Driven Differentially Heated Square Cavity
,”
Int. J. Heat Mass Transfer
,
47
(
8–9
), pp.
1761
1769
.
21.
Waheed
,
M. A.
,
2009
, “
Mixed Convective Heat Transfer in Rectangular Enclosures Driven by a Continuously Moving Horizontal Plate
,”
Int. J. Heat Mass Transfer
,
52
(
21–22
), pp.
5055
5063
.
22.
Cheng
,
T. S.
, and
Liu
,
W.-H.
,
2010
, “
Effect of Temperature Gradient Orientation on the Characteristics of Mixed Convection Flow in a Lid-Driven Square Cavity
,”
Comput. Fluids
,
39
(
6
), pp.
965
978
.
23.
Cheng
,
T. S.
,
2011
, “
Characteristics of Mixed Convection Heat Transfer in a Lid-Driven Square Cavity With Various Richardson and Prandtl Numbers
,”
Int. J. Therm. Sci.
,
50
(
2
), pp.
197
205
.
24.
Bettaibi
,
S.
,
Kuznik
,
F.
, and
Sediki
,
E.
,
2014
, “
Hybrid Lattice Boltzmann Finite Difference Simulation of Mixed Convection Flows in a Lid-Driven Square Cavity
,”
Phys. Lett. A
,
378
(
32–33
), pp.
2429
2435
.
25.
Al-Mudhaf
,
A.
, and
Chamkha
,
A. J.
,
2004
, “
Natural Convection of Liquid Metals in an Inclined Enclosure in the Presence of a Magnetic Field
,”
Int. J. Fluid Mech. Res.
,
31
(
3
), pp.
221
243
.
26.
Ogut
,
E.
,
2008
, “
Mixed Convection in an Inclined and Lid-Driven Rectangular Enclosure Heated and Cooled on Adjacent Walls
,”
Trans. Can. Soc. Mech. Eng.
,
32
(
2
), pp.
213
226
.
27.
Ogut
,
E. B.
,
2010
, “
Mixed Convection in an Inclined Lid-Driven Enclosure With a Constant Flux Heater Using Differential Quadrature (DQ) Method
,”
Int. J. Phys. Sci.
,
5
(
15
), pp.
2287
2303
.
28.
Darzi
,
A. A. R.
,
Farhadi
,
M.
, and
Sedighi
,
K.
,
2011
, “
Mixed Convection Simulation of Inclined Lid Driven Cavity Using Lattice Boltzmann Method
,”
Iran. J. Sci. Technol.
,
35
(
M1
), pp.
73
83
.
29.
Karimipour
,
A.
,
Nezhad
,
A. H.
, and
D'Orazio
,
A.
,
2013
, “
The Effects of Inclination Angle and Prandtl Number on the Mixed Convection in the Inclined Lid Driven Cavity Using Lattice Boltzmann Method
,”
J. Theor. Appl. Mech.
,
51
(
2
), pp.
447
462
.
30.
Mekroussi
,
S.
,
Nehari
,
D.
, and
Bouzit
,
M.
,
2013
, “
Analysis of Mixed Convection in an Inclined Lid-Driven Cavity With a Wavy Wall
,”
J. Mech. Sci. Technol.
,
27
(
7
), pp.
2181
2190
.
31.
Sivasankaran
,
S.
,
Sivakumar
,
V.
, and
Hussein
,
A. K.
,
2013
, “
Numerical Study on Mixed Convection in an Inclined Lid-Driven Cavity With Discrete Heating
,”
Int. Commun. Heat Mass Transfer
,
46
, pp.
112
125
.
32.
Cheng
,
T. S.
, and
Liu
,
W.-H.
,
2014
, “
Effects of Cavity Inclination on Mixed Convection Heat Transfer in Lid-Driven Cavity Flows
,”
Comput. Fluids
,
100
, pp.
108
122
.
33.
Sivakumar
,
V.
, and
Sivasankaran
,
S.
,
2014
, “
Mixed Convection in an Inclined Lid-Driven Cavity With Non-Uniform Heating on Both Sidewalls
,”
ASME J. Appl. Mech. Tech. Phys.
,
55
(
4
), pp.
634
649
.
34.
Hajmohammadi
,
M. R.
,
Maleki
,
H.
, and
Lorenzini
,
G.
,
2015
, “
Effects of Cu and Ag Nano-Particles on Flow and Heat Transfer From Permeable Surfaces
,”
Adv. Powder Technol.
,
26
(
1
), pp.
193
199
.
35.
Abu-Nada
,
E.
, and
Chamkha
,
A. J.
,
2010
, “
Mixed Convection Flow in a Lid-Driven Inclined Square Enclosure Filled With a Nanofluid
,”
Eur. J. Mech. B
,
29
(
6
), pp.
472
482
.
36.
Mansour
,
M. A.
,
Mohamed
,
R. A.
, and
Abd-Elaziz
,
M. M.
,
2010
, “
Numerical Simulation of Mixed Convection Flows in a Square Lid-Driven Cavity Partially Heated From Below Using Nanofluid
,”
Int. Commun. Heat Mass Transfer
,
37
(
10
), pp.
1504
1512
.
37.
Muthtamilselvan
,
M.
,
Kandaswamy
,
P.
, and
Lee
,
J.
,
2010
, “
Heat Transfer Enhancement of Copper–Water Nanofluids in a Lid-Driven Enclosure
,”
Commun. Nonlinear Sci. Numer. Simul.
,
15
(
6
), pp.
1501
1510
.
38.
Talebi
,
F.
,
Mahmoudi
,
A. H.
, and
Shahi
,
M.
,
2010
, “
Numerical Study of Mixed Convection Flows in a Square Lid-Driven Cavity Utilizing Nanofluid
,”
Int. Commun. Heat Mass Transfer
,
37
(
1
), pp.
79
90
.
39.
Alinia
,
M.
,
Ganji
,
D. D.
, and
Gorji-Bandpy
,
M.
,
2011
, “
Numerical Study of Mixed Convection in an Inclined Two Sided Lid Driven Cavity Filled With Nanofluid Using Two-Phase Mixture Model
,”
Int. Commun. Heat Mass Transfer
,
38
(
10
), pp.
1428
1435
.
40.
Kahveci
,
K.
, and
Ogut
,
E. B.
,
2011
, “
Mixed Convection of Water-Based Nanofluids in a Lid-Driven Square Enclosure With a Heat Source
,”
Heat Transfer Res.
,
42
(
8
), pp.
711
735
.
41.
Mahmoodi
,
M.
,
2011
, “
Mixed Convection Inside Nanofluid Filled Rectangular Enclosures With Moving Bottom Wall
,”
Therm. Sci.
,
15
(
3
), pp.
889
903
.
42.
Arani
,
A. A. A.
,
Sebdani
,
S. M.
, and
Mahmoodi
,
M.
,
2012
, “
Numerical Study of Mixed Convection Flow in a Lid-Driven Cavity With Sinusoidal Heating on Sidewalls Using Nanofluid
,”
Superlattices Microstruct.
,
51
(
6
), pp.
893
911
.
43.
Chamkha
,
A. J.
, and
Abu-Nada
,
E.
,
2012
, “
Mixed Convection Flow in Single- and Double-Lid Driven Square Cavities Filled With Water–Al2O3 Nanofluid: Effect of Viscosity Models
,”
Eur. J. Mech. B
,
36
, pp.
82
96
.
44.
Mansour
,
M. A.
, and
Ahmed
,
S. E.
,
2012
, “
Mixed Convection Flows in a Square Lid-Driven Cavity With Heat Source at the Bottom Utilising Nanofluid
,”
Can. J. Chem. Eng.
,
90
(
1
), pp.
100
110
.
45.
Rahman
,
M. M.
,
Billah
,
M. M.
, and
Hasanuzzaman
,
M.
,
2012
, “
Heat Transfer Enhancement of Nanofluids in a Lid-Driven Square Enclosure
,”
Numer. Heat Transfer, Part A
,
62
(
12
), pp.
973
991
.
46.
Salari
,
M.
,
Tabar
,
M. M.
, and
Tabar
,
A. M.
,
2012
, “
Mixed Convection of Nanofluid Flows in a Square Lid-Driven Cavity Heated Partially From Both the Bottom and Side Walls
,”
Numer. Heat Transfer, Part A
,
62
(
2
), pp.
158
177
.
47.
Cho
,
C.
,
Chen
,
C.
, and
Chen
,
C.
,
2013
, “
Mixed Convection Heat Transfer Performance of Water-Based Nanofluids in Lid-Driven Cavity With Wavy Surfaces
,”
Int. J. Therm. Sci.
,
68
, pp.
181
190
.
48.
Esfe
,
M. H.
,
Ghadi
,
A. Z.
, and
Noroozi
,
M. J.
,
2013
, “
Numerical Simulation of Mixed Convection Within Nanofluid-Filled Cavities With Two Adjacent Moving Walls
,”
Trans. Can. Soc. Mech. Eng.
,
37
(
4
), pp.
1073
1089
.
49.
Fereidoon
,
A.
,
Saedodin
,
S.
, and
Esfe
,
M. H.
,
2013
, “
Evaluation of Mixed Convection in Inclined Square Lid-Driven Cavity Filled With Al2O3/Water Nano-Fluid
,”
Eng. Appl. Comput. Fluid Mech.
,
7
(
1
), pp.
55
65
.
50.
Hussein
,
A. K.
,
Ahmed
,
S. E.
, and
Mohammed
,
H. A.
,
2013
, “
Mixed Convection of Water-Based Nanofluids in a Rectangular Inclined Lid-Driven Cavity Partially Heated From Its Left Side Wall
,”
J. Comput. Theor. Nanosci.
,
10
(
9
), pp.
2222
2233
.
51.
Li
,
D.
,
Wang
,
X.
, and
Feng
,
H.
,
2013
, “
Fully HOC Scheme for Mixed Convection Flow in a Lid-Driven Cavity Filled With a Nanofluid
,”
Adv. Appl. Math. Mech.
,
5
(
1
), pp.
55
77
.
52.
Mansour
,
M. A.
, and
Ahmed
,
S. E.
,
2013
, “
Mixed Convection in Double Lid-Driven Enclosures Filled With Al2O3–Water Nanofluid
,”
J. Thermophys. Heat Transfer
,
27
(
4
), pp.
707
718
.
53.
Abu-Nada
,
E.
, and
Chamkha
,
A. J.
,
2014
, “
Mixed Convection Flow of a Nanofluid in a Lid-Driven Cavity With a Wavy Wall
,”
Int. Commun. Heat Mass Transfer
,
57
, pp.
36
47
.
54.
Esfe
,
M. H.
,
Akbari
,
M.
, and
Toghraie
,
D.
,
2014
, “
Effect of Nanofluid Variable Properties on Mixed Convection Flow and Heat Transfer in an Inclined Two-Sided Lid-Driven Cavity With Sinusoidal Heating on Sidewalls
,”
Heat Transfer Res.
,
45
(
5
), pp.
409
432
.
55.
Faridzadeh
,
M. R.
,
Semiromi
,
D. T.
, and
Niroomand
,
A.
,
2014
, “
Analysis of Laminar Mixed Convection in an Inclined Square Lid-Driven Cavity With a Nanofluid by Using an Artificial Neural Network
,”
Heat Transfer Res.
,
45
(
4
), pp.
361
390
.
56.
Heydari
,
M. R.
,
Esfe
,
M. H.
, and
Hajmohammad
,
M. H.
,
2014
, “
Mixed Convection Heat Transfer in a Double Lid-Driven Inclined Square Enclosure Subjected to Cu–Water Nanofluid With Particle Diameter of 90 Nm
,”
Heat Transfer Res.
,
45
(
1
), pp.
75
95
.
57.
Karimipour
,
A.
,
Esfe
,
M. H.
, and
Safaei
,
M. R.
,
2014
, “
Mixed Convection of Copper–Water Nanofluid in a Shallow Inclined Lid Driven Cavity Using the Lattice Boltzmann Method
,”
Physica A
,
402
, pp.
150
168
.
58.
Muthtamilselvan
,
M.
, and
Doh
,
D. H.
,
2014
, “
Mixed Convection of Heat Generating Nanofluid in a Lid-Driven Cavity With Uniform and Non-Uniform Heating of Bottom Wall
,”
Appl. Math. Modell.
,
38
(
13
), pp.
3164
3174
.
59.
Nasrin
,
R.
,
Alim
,
M. A.
, and
Chamkha
,
A. J.
,
2014
, “
Modeling of Mixed Convective Heat Transfer Utilizing Nanofluid in a Double Lid-Driven Chamber With Internal Heat Generation
,”
Int. J. Numer. Methods Heat Fluid Flow
,
24
(
1
), pp.
36
57
.
60.
Ogut
,
E. B.
, and
Kahveci
,
K.
,
2014
, “
Mixed Convection of Water-Based Nanofluids in a Square Enclosure Heated and Cooled on Adjacent Walls
,”
Prog. Comput. Fluid Dyn.
,
14
(
5
), pp.
328
340
.
61.
Sivasankaran
,
S.
, and
Pan
,
K. L.
,
2014
, “
Natural Convection of Nanofluids in a Cavity With Nonuniform Temperature Distributions on Side Walls
,”
Numer. Heat Transfer, Part A
,
65
(
3
), pp.
247
268
.
62.
Sharif
,
M. A. R.
,
2007
, “
Laminar Mixed Convection in Shallow Inclined Driven Cavities With Hot Moving Lid on Top and Cooled From Bottom
,”
Appl. Therm. Eng.
,
27
(
5–6
), pp.
1036
1042
.
63.
Oztop
,
H. F.
, and
Abu-Nada
,
E.
,
2008
, “
Numerical Study of Natural Convection in Partially Heated Rectangular Enclosures Filled With Nanofluids
,”
Int. J. Heat Fluid Flow
,
29
(
5
), pp.
1326
1336
.
64.
Brinkman
,
H. C.
,
1952
, “
The Viscosity of Concentrated Suspensions and Solutions
,”
J. Chem. Phys.
,
20
, p.
571
.
65.
Ho
,
C. J.
,
Chen
,
M. W.
, and
Li
,
Z. W.
,
2008
, “
Numerical Simulation of Natural Convection of Nanofluid in a Square Enclosure: Effects Due to Uncertainties of Viscosity and Thermal Conductivity
,”
Int. J. Heat Mass Transfer
,
51
(
17–18
), pp.
4506
4516
.
66.
Aminossadati
,
S. M.
, and
Ghasemi
,
B.
,
2009
, “
Natural Convection Cooling of a Localised Heat Source at the Bottom of a Nanofluid-Filled Enclosure
,”
Eur. J. Mech. B
,
28
(
5
), pp.
630
640
.
67.
Chon
,
C.
,
Kihm
,
K.
, and
Lee
,
S.
,
2005
, “
Empirical Correlation Finding the Role of Temperature and Particle Size for Nanofluid (Al2O3) Thermal Conductivity Enhancement
,”
Appl. Phys. Lett.
,
87
(
15
), p.
153107
.
68.
Masoumi
,
N.
,
Sohrabi
,
N.
, and
Behzadmehr
,
A.
,
2009
, “
A New Model for Calculating the Effective Viscosity of Nanofluids
,”
J. Phys. D: Appl. Phys.
,
42
(
5
), p.
055501
.
69.
Gul
,
R.
,
Khan
,
Z. H.
, and
Khan
,
W. A.
,
2009
, “
Heat Transfer From Solids With Variable Thermal Conductivity and Uniform Internal Heat Generation Using Homotopy Perturbation Method
,”
ASME
Paper No. HT2008-56449.
70.
Khan
,
Z. H.
,
Gul
,
R.
, and
Khan
,
W. A.
,
2009
, “
Effect of Variable Thermal Conductivity on Heat Transfer From a Hollow Sphere With Heat Generation Using Homotopy Perturbation Method
,”
ASME
Paper No. HT2008-56448.
71.
He
,
J.
,
2003
, “
Homotopy Perturbation Method: A New Nonlinear Analytical Technique
,”
Appl. Math. Comput.
,
135
(
1
), pp.
73
79
.
72.
Hajmohammadi
,
M. R.
, and
Nourazar
,
S. S.
,
2014
, “
Conjugate Forced Convection Heat Transfer From a Heated Flat Plate of Finite Thickness and Temperature-Dependent Thermal Conductivity
,”
Heat Transfer Eng.
,
35
(
9
), pp.
863
874
.
You do not currently have access to this content.