The all-vanadium redox flow battery (VRFB) has been considered as one of the most promising rechargeable battery for large-scale energy storage system that can be used with renewable energy sources, such as wind and solar energy, for electrical energy storage and distribution. Since it is able to withstand average loads, high energy efficiency (EE), and high power output, the battery exhibits good transient behavior and sustains sudden voltage drop. The dynamics of the battery is governed by the equations of fluid mechanics, electrodynamics, and electrochemistry. In this context, earlier efforts reported in the literature were mainly focused on simulation of the variation of the charge/discharge characteristics of the cell. There is a need to optimize the cell parameters so as to improve the cell performance. The performance of the battery is also studied numerically with the two-dimensional (2D) isothermal transient model. This model is used to predict the effects of change in electrolyte flow rate, concentration, electrode porosity, and applied current. The efficiency analysis for the effects of concentration shows that maximum coulombic, voltage, and energy efficiencies have been achieved in case of higher concentration. Numerical model results are validated with the available experimental result, which shows good agreement.

References

1.
Kear
,
G.
,
Shah
,
A. A.
, and
Walsh
,
F. C.
,
2012
, “
Development of the All-Vanadium Redox Flow Battery for Energy Storage: A Review of Technological, Financial and Policy Aspects
,”
Int. J. Energy Res.
,
36
(
11
), pp.
1105
1120
.10.1002/er.1863
2.
Skyllas-Kazacos
,
M.
,
Rychick
,
M.
, and
Robins
,
R.
,
1988
, “
All Vanadium Redox Battery
,” U.S. Patent No. 4,786,567, pp.
1
22
.
3.
Sum
,
E.
, and
Skyllas-Kazacos
,
M.
,
1985
, “
A Study of the V(II)/V(III) Redox Couple for Redox Flow Cell Applications
,”
J. Power Sources
,
15
(
2–3
), pp.
179
190
.10.1016/0378-7753(85)80071-9
4.
Poullikkas
,
A.
,
2013
, “
A Comprarative Overview of Large-Scale Battery Systems for Electricity Storage
,”
Renewable and Sustainable Energy Reviews
,
27
, pp.
778
788
.10.1016/j.rser.2013.07.017
5.
Ding
,
C.
,
Zhang
,
H.
,
Li
,
X.
,
Liu
,
T.
, and
Xing
,
F.
,
2013
, “
Vanadium Flow Battery for Energy Storage: Prospects and Challenges
,”
J. Phys. Chem. Lett.
,
4
(
8
), pp.
1281
1294
.10.1021/jz4001032
6.
Shah
,
A. A.
,
Tangirala
,
R.
,
Singh
,
R.
,
Wills
,
R. G. A.
, and
Walsh
,
F. C.
,
2011
, “
A Dynamic Unit Cell Model for the All-Vanadium Flow Battery
,”
J. Electrochem. Soc.
,
158
(
6
), pp.
A671
A677
.10.1149/1.3561426
7.
Tang
,
A.
,
Bao
,
J.
, and
Skyllas-Kazacos
,
M.
,
2011
, “
Dynamic Modeling of the Effects of Ion Diffusion and Side Reactions on the Capacity Loss for Vanadium Redox Flow Battery
,”
J. Power Sources
,
196
(
24
), pp.
10737
10747
.10.1016/j.jpowsour.2011.09.003
8.
Yu
,
V.
, and
Chen
,
D.
,
2013
, “
Dynamic Model of a Vanadium Redox Flow Battery for System Performance Control
,”
ASME J. Sol. Energy Eng.
,
136
(
2
), p.
021005
.10.1115/1.4024928
9.
Tang
,
A.
,
Bao
,
J.
, and
Skyllas-Kazacos
,
M.
,
2014
, “
Studies on Pressure Losses and Flow Rate Optimization in Vanadium Redox Flow Battery
,”
J. Power Sources
,
248
, pp.
154
162
.10.1016/j.jpowsour.2013.09.071
10.
Shah
,
A. A.
,
Watt-Smith
,
M. J.
, and
Walsh
,
F. C.
,
2008
, “
A Dynamic Performance Model for Redox Flow Batteries Involving Soluble Species
,”
Electrochim. Acta
,
53
(
27
), pp.
8087
8100
.10.1016/j.electacta.2008.05.067
11.
Al-Fetlawi
,
H.
,
Shah
,
A. A.
, and
Walsh
,
F. C.
,
2009
, “
Non-Isothermal Modelling of the All-Vanadium Redox Flow Battery
,”
Electrochim. Acta
,
55
(
1
), pp.
78
89
.10.1016/j.electacta.2009.08.009
12.
Shah
,
A. A.
,
Al-Fetlawi
,
H.
, and
Walsh
,
F. C.
,
2010
, “
Dynamic Modelling of Hydrogen Evolution Effects in the All-Vanadium Redox Flow Battery
,”
Electrochim. Acta
,
55
(
3
), pp.
1125
1139
.10.1016/j.electacta.2009.10.022
13.
Al-Fetlawi
,
H.
,
Shah
,
A. A.
, and
Walsh
,
F. C.
,
2010
, “
Modeling the Effects of Oxygen Evolution in the All-Vanadium Redox Flow Battery
,”
Electrochim. Acta
,
55
(
9
), pp.
3192
3205
.10.1016/j.electacta.2009.12.085
14.
You
,
D.
,
Zhang
,
H.
, and
Chen
,
J.
,
2009
, “
A Simple Model for the Vanadium Redox Battery
,”
Electrochim. Acta
,
54
(
27
), pp.
6827
6836
.10.1016/j.electacta.2009.06.086
15.
Ma
,
X.
,
Zhang
,
H.
, and
Xing
,
F.
,
2011
, “
A Three-Dimensional Model for Negative Half Cell of the Vanadium Redox Flow Battery
,”
Electrochim. Acta
,
58
, pp.
238
246
.10.1016/j.electacta.2011.09.042
16.
Zheng
,
Q.
,
Zhang
,
H.
,
Xing
,
F.
,
Ma
,
X.
,
Li
,
X.
, and
Ning
,
G.
,
2014
, “
A Three-Dimensional Model for Thermal Analysis in a Vanadium Flow Battery
,”
Appl. Energy
,
113
, pp.
1675
1685
.10.1016/j.apenergy.2013.09.021
17.
Knehr
,
K. R.
,
Agar
,
E.
,
Dennison
,
C. R.
,
Kalidindi
,
A. R.
, and
Kumbur
,
E. C.
,
2012
, “
A Transient Vanadium Flow Battery Model Incorporating Vanadium Crossover and Water Transport Through the Membrane
,”
J. Electrochem. Soc.
,
159
(
9
), pp.
A1446
A1459
.10.1149/2.017209jes
18.
Knehr
,
K. W.
, and
Kumbur
,
E. C.
,
2012
, “
Role of Convection and Related Effects on Species Crossover and Capacity Loss in Vanadium Redox Flow Batteries
,”
Electrochem. Commun.
,
23
, pp.
76
79
.10.1016/j.elecom.2012.07.008
19.
Xu
,
Q.
,
Zhao
,
T. S.
, and
Leung
,
P. K.
,
2013
, “
Numerical Investigations of Flow Field Designs for Vanadium Redox Flow Batteries
,”
Appl. Energy
,
105
, pp.
47
56
.10.1016/j.apenergy.2012.12.041
20.
Li
,
M.
, and
Hikihara
,
T.
,
2008
, “
A Coupled Dynamical Model of Redox Flow Battery Based on Chemical Reaction, Fluid Flow, and Electrical Circuit
,”
IEICE Trans. Fundam. Electron. Commun. Comput. Sci.
,
E91-A
(
7
), pp.
1741
1747
.10.1093/ietfec/e91-a.7.1741
21.
Qiu
,
G.
,
Joshi
,
A. S.
,
Dennison
,
C. R.
,
Knehr
,
K. W.
,
Kumbur
,
E. C.
, and
Sun
,
Y.
,
2012
, “
3-D Pore-Scale Resolved Model for Coupled Species/Charge/Fluid Transport in a Vanadium Redox Flow Battery
,”
Electrochim. Acta
,
64
, pp.
46
64
.10.1016/j.electacta.2011.12.065
22.
Qiu
,
G.
,
Dennison
,
C. R.
,
Knehr
,
K. W.
,
Kumbur
,
E. C.
, and
Sun
,
Y.
,
2012
, “
Pore-Scale Analysis of Effects of Electrode Morphology and Electrolyte Flow Conditions on Performance of Vanadium Redox Flow Batteries
,”
J. Power Sources
,
219
, pp.
223
234
.10.1016/j.jpowsour.2012.07.042
You do not currently have access to this content.