The present study reports the experimental validation of thermohydraulic modeling for prediction of pressure drop and heat transfer coefficient. Experiments were performed on plate heat exchanger using chilled water and ice slurry as secondary fluids. Propylene glycol (PG) and mono-ethylene glycol (MEG) are used as depressants (10%, 20%, 30%, and 40% concentration) in ice slurry formation. The results show that thermohydraulic modeling predicts the pressure drop and overall heat transfer coefficient for water to water and water to ice slurry within the discrepancy limit of ±15%.
Issue Section:
Research Papers
References
1.
Hagg
, C.
, 2005
, “Ice Slurry as Secondary Fluid in Refrigeration Systems Fundamentals and Applications in Supermarkets
,” Licentiate thesis, Division of Applied Thermodynamics and Refrigeration, Department of Energy Technology, School of Industrial Engineering and Management, Stockholm.2.
Melinder
, Å.
, 2007
, “Thermophysical Properties of Aqueous Solutions Used as Secondary Working Fluids
,” Doctoral thesis, Division of Applied Thermodynamics and Refrigeration, Department of Energy Technology, School of Industrial Engineering and Management, KTH Royal Institute of Technology, Stockholm.3.
Kauffeld
, M.
, Wang
, M. J.
, Goldstein
, V.
, and Kasza
, K. E.
, 2010
, “Ice Slurry Applications
,” Int. J. Refrig.
, 33
(8
), pp. 1491
–1505
.10.1016/j.ijrefrig.2010.07.0184.
Ma
, Z. W.
, and Zhang
, P.
, 2011
, “Pressure Drop and Heat Transfer Characteristics of Clathrate Hydrate Slurry in a Plate Heat Exchanger
,” Int. J. Refrig.
, 34
(3
), pp. 796
–806
.10.1016/j.ijrefrig.2010.12.0225.
Warnakulasuriya
, F. S. K.
, and Worek
, W. M.
, 2008
, “Heat Transfer and Pressure Drop Properties of High Viscous Solutions in Plate Heat Exchangers
,” Int. J. Heat Mass Transfer
, 51
(1–2
), pp. 52
–67
.10.1016/j.ijheatmasstransfer.2007.04.0546.
Nørgaard
, E.
, Sørensena
, T. A.
, Hansena
, T. M.
, and Kauffeld
, M.
, 2005
, “Performance of Components of Ice Slurry Systems: Pumps, Plate Heat Exchangers, and Fittings
,” Int. J. Refrig.
, 28
(1
), pp. 83
–91
.10.1016/j.ijrefrig.2004.07.0187.
Bellas
, J.
, Chaer
, I.
, and Tassou
, S. A.
, 2002
, “Heat Transfer and Pressure Drop of Ice Slurries in Plate Heat Exchangers
,” Appl. Therm. Eng.
, 22
(7
), pp. 721
–732
.10.1016/S1359-4311(01)00126-08.
Das
, S. K.
, 2006
, Process Heat Transfer
, Narosa Publishing House
, New Delhi, Chap. 7.9.
Jarzebski
, A. B.
, and Wardas-Koziel
, E.
, 1985
, “Dimensioning of Plate Heat-Exchangers to Give Minimum Annual Operating Costs
,” Chem. Eng. Res. Des.
,” 63
(4
), pp. 211
–218
.10.
Shah
, R. K.
, and Focke
, W. W.
, 1988
, “Plate Heat Exchangers and Their Design Theory
,” Heat Transfer Equipment Design
, R. K.
Shah
, E. C.
Subbarao
, and R. A.
Mashelkar
, eds., Hemisphere
, Washington, DC
, pp. 227
–254
.11.
Cooper
, A.
, and Usher
, J. D.
, 1983
, “Plate Heat Exchangers
,” Heat Exchanger Design Handbook
, Hemisphere
, Washington, DC, Chap. 3.7.12.
Jackson
, B. W.
, and Troupe
, R. A.
, 1966
, “Plate Heat Exchanger Design by e-NTU Method
,” Chem. Eng. Prog. Symp. Ser.
, 62
(64
), pp. 185
–190
.13.
Kandlikar
, S. G.
, and Shah
, R. K.
, 1989
, “Multipass Plate Heat Exchangers-Effectiveness-NTU Results and Guidelines for Selecting Pass Arrangements
,” ASME J. Heat Transfer
, 111
(2
), pp. 300
–313
.10.1115/1.325067814.
Zaleski
, T.
, and Klepacka
, K.
, 1992
, “Plate Heat-Exchangers-Method of Calculation, Charts and Guidelines for Selecting Plate Heat-Exchangers Configurations
,” Chem. Eng. Process.
, 31
(1
), pp. 45
–56
.10.1016/0255-2701(92)80008-Q15.
Focke
, W. W.
, 1986
, “Selecting Optimum Plate Heat-Exchanger Surface Patterns
,” ASME J. Heat Transfer
, 108
(1
), pp. 153
–160
.10.1115/1.324688016.
Shah
, R. K.
, and Focke
, W. W.
, 1988
, “Plate Heat Exchangers and Their Design Theory
,” Heat Transfer Equipment Design
, R. K.
Shah
, E. C.
Subbarao
, and R. A.
Mashelkar
, eds., Hemisphere
, Washington, DC
, pp. 227
–254
.17.
Thonon
, B.
, and Mercier
, P.
, 1996
, “Les _Echangeurs _a Plaques: Dix Ans de Recherche au GRETh: Partie 2. Dimensionnement et Mauvaise Distribuition
,” Rev. Gen. Therm.
, 35
(416
), pp. 561
–568
.10.1016/S0035-3159(99)80082-818.
Gut
, J. A. W.
, and Pinto
, J. M.
, 2004
, “Optimal Configuration Design for Plate Heat Exchangers
,” Int. J. Heat Mass Transfer
, 47
(22
), pp. 4833
–4848
.10.1016/j.ijheatmasstransfer.2004.06.00219.
Zhu
, J.
, and Zhang
, W.
, 2004
, “Optimization Design of Plate Heat Exchangers (PHE) for Geothermal District Heating Systems
,” Geothermics
, 33
(3
), pp. 337
–347
.10.1016/j.geothermics.2003.08.01320.
Wang
, L.
, and Sunden
, B.
, 2003
, “Optimal Design of Plate Heat Exchangers With and Without Pressure Drop Specifications
,” Appl. Therm. Eng.
, 23
(3
), pp. 295
–311
.10.1016/S1359-4311(02)00195-321.
Kauffeld
, M.
, Kawaji
, M.
, and Egolf
, P. W.
, 2005
, Handbook on Ice Slurries-Fundamentals and Engineering
, International Institute of Refrigeration (IIR)
, Paris
.22.
Moffat
, R. J.
, 1985
, “Using Uncertainty Analysis in the Planning of an Experiment
,” ASME J. Fluids Eng.
, 107
(2
), pp. 173
–178
.10.1115/1.3242452Copyright © 2016 by ASME
You do not currently have access to this content.