The present study reports the experimental validation of thermohydraulic modeling for prediction of pressure drop and heat transfer coefficient. Experiments were performed on plate heat exchanger using chilled water and ice slurry as secondary fluids. Propylene glycol (PG) and mono-ethylene glycol (MEG) are used as depressants (10%, 20%, 30%, and 40% concentration) in ice slurry formation. The results show that thermohydraulic modeling predicts the pressure drop and overall heat transfer coefficient for water to water and water to ice slurry within the discrepancy limit of ±15%.

References

1.
Hagg
,
C.
,
2005
, “
Ice Slurry as Secondary Fluid in Refrigeration Systems Fundamentals and Applications in Supermarkets
,” Licentiate thesis, Division of Applied Thermodynamics and Refrigeration, Department of Energy Technology, School of Industrial Engineering and Management, Stockholm.
2.
Melinder
,
Å.
,
2007
, “
Thermophysical Properties of Aqueous Solutions Used as Secondary Working Fluids
,” Doctoral thesis, Division of Applied Thermodynamics and Refrigeration, Department of Energy Technology, School of Industrial Engineering and Management, KTH Royal Institute of Technology, Stockholm.
3.
Kauffeld
,
M.
,
Wang
,
M. J.
,
Goldstein
,
V.
, and
Kasza
,
K. E.
,
2010
, “
Ice Slurry Applications
,”
Int. J. Refrig.
,
33
(
8
), pp.
1491
1505
.10.1016/j.ijrefrig.2010.07.018
4.
Ma
,
Z. W.
, and
Zhang
,
P.
,
2011
, “
Pressure Drop and Heat Transfer Characteristics of Clathrate Hydrate Slurry in a Plate Heat Exchanger
,”
Int. J. Refrig.
,
34
(
3
), pp.
796
806
.10.1016/j.ijrefrig.2010.12.022
5.
Warnakulasuriya
,
F. S. K.
, and
Worek
,
W. M.
,
2008
, “
Heat Transfer and Pressure Drop Properties of High Viscous Solutions in Plate Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
51
(
1–2
), pp.
52
67
.10.1016/j.ijheatmasstransfer.2007.04.054
6.
Nørgaard
,
E.
,
Sørensena
,
T. A.
,
Hansena
,
T. M.
, and
Kauffeld
,
M.
,
2005
, “
Performance of Components of Ice Slurry Systems: Pumps, Plate Heat Exchangers, and Fittings
,”
Int. J. Refrig.
,
28
(
1
), pp.
83
91
.10.1016/j.ijrefrig.2004.07.018
7.
Bellas
,
J.
,
Chaer
,
I.
, and
Tassou
,
S. A.
,
2002
, “
Heat Transfer and Pressure Drop of Ice Slurries in Plate Heat Exchangers
,”
Appl. Therm. Eng.
,
22
(
7
), pp.
721
732
.10.1016/S1359-4311(01)00126-0
8.
Das
,
S. K.
,
2006
,
Process Heat Transfer
,
Narosa Publishing House
, New Delhi, Chap. 7.
9.
Jarzebski
,
A. B.
, and
Wardas-Koziel
,
E.
,
1985
, “
Dimensioning of Plate Heat-Exchangers to Give Minimum Annual Operating Costs
,”
Chem. Eng. Res. Des.
,”
63
(
4
), pp.
211
218
.
10.
Shah
,
R. K.
, and
Focke
,
W. W.
,
1988
, “
Plate Heat Exchangers and Their Design Theory
,”
Heat Transfer Equipment Design
,
R. K.
Shah
,
E. C.
Subbarao
, and
R. A.
Mashelkar
, eds.,
Hemisphere
,
Washington, DC
, pp.
227
254
.
11.
Cooper
,
A.
, and
Usher
,
J. D.
,
1983
, “
Plate Heat Exchangers
,”
Heat Exchanger Design Handbook
,
Hemisphere
, Washington, DC, Chap. 3.7.
12.
Jackson
,
B. W.
, and
Troupe
,
R. A.
,
1966
, “
Plate Heat Exchanger Design by e-NTU Method
,”
Chem. Eng. Prog. Symp. Ser.
,
62
(
64
), pp.
185
190
.
13.
Kandlikar
,
S. G.
, and
Shah
,
R. K.
,
1989
, “
Multipass Plate Heat Exchangers-Effectiveness-NTU Results and Guidelines for Selecting Pass Arrangements
,”
ASME J. Heat Transfer
,
111
(
2
), pp.
300
313
.10.1115/1.3250678
14.
Zaleski
,
T.
, and
Klepacka
,
K.
,
1992
, “
Plate Heat-Exchangers-Method of Calculation, Charts and Guidelines for Selecting Plate Heat-Exchangers Configurations
,”
Chem. Eng. Process.
,
31
(
1
), pp.
45
56
.10.1016/0255-2701(92)80008-Q
15.
Focke
,
W. W.
,
1986
, “
Selecting Optimum Plate Heat-Exchanger Surface Patterns
,”
ASME J. Heat Transfer
,
108
(
1
), pp.
153
160
.10.1115/1.3246880
16.
Shah
,
R. K.
, and
Focke
,
W. W.
,
1988
, “
Plate Heat Exchangers and Their Design Theory
,”
Heat Transfer Equipment Design
,
R. K.
Shah
,
E. C.
Subbarao
, and
R. A.
Mashelkar
, eds.,
Hemisphere
,
Washington, DC
, pp.
227
254
.
17.
Thonon
,
B.
, and
Mercier
,
P.
,
1996
, “
Les _Echangeurs _a Plaques: Dix Ans de Recherche au GRETh: Partie 2. Dimensionnement et Mauvaise Distribuition
,”
Rev. Gen. Therm.
,
35
(
416
), pp.
561
568
.10.1016/S0035-3159(99)80082-8
18.
Gut
,
J. A. W.
, and
Pinto
,
J. M.
,
2004
, “
Optimal Configuration Design for Plate Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
47
(
22
), pp.
4833
4848
.10.1016/j.ijheatmasstransfer.2004.06.002
19.
Zhu
,
J.
, and
Zhang
,
W.
,
2004
, “
Optimization Design of Plate Heat Exchangers (PHE) for Geothermal District Heating Systems
,”
Geothermics
,
33
(
3
), pp.
337
347
.10.1016/j.geothermics.2003.08.013
20.
Wang
,
L.
, and
Sunden
,
B.
,
2003
, “
Optimal Design of Plate Heat Exchangers With and Without Pressure Drop Specifications
,”
Appl. Therm. Eng.
,
23
(
3
), pp.
295
311
.10.1016/S1359-4311(02)00195-3
21.
Kauffeld
,
M.
,
Kawaji
,
M.
, and
Egolf
,
P. W.
,
2005
,
Handbook on Ice Slurries-Fundamentals and Engineering
,
International Institute of Refrigeration (IIR)
,
Paris
.
22.
Moffat
,
R. J.
,
1985
, “
Using Uncertainty Analysis in the Planning of an Experiment
,”
ASME J. Fluids Eng.
,
107
(
2
), pp.
173
178
.10.1115/1.3242452
You do not currently have access to this content.