In this paper, both theory and experimental setup of the photo-thermal technique are presented. Based on this technique, two measurement methodologies are available: phase shift method and temperature change method. However, only the experimental results from the phase shift method are presented in this paper. The measurements can be performed at any radial direction on a sample’s surface. This technique appears to be a successful method for measuring the variation of surface thermal diffusivity of various materials. An automated platform has also been developed and integrated into the technique to measure and map the variation of surface thermal diffusivity of a material. This technique can be used to detect any surface’s thermal defects of a material. It is also useful in studying the surface temperature distribution of a heat application material. One of its applications is on the study of friction. The temperature increase of a friction material subjected to a sliding process is influenced by its thermal property at the sliding interface. The thermal diffusivity mapping of a rubbing surface may help in predicting its surface temperature distribution and in studying the thermal behavior of a friction interface.

1.
Bowden, F. P., and Tabor, D., 1964, The Friction and Lubrication of Solids, Part II, Clarendon, Oxford.
2.
Ling, F. F., 1973, Surface Mechanics, Wiley, New York.
3.
Blok, H., 1937, “Theoretical Study of Temperature Rise at Surfaces of Actual Contact under oiliness Lubricating Conditions,” Proceedings of General Discussion of Lubrication and Lubricants, The Institute of Mechanical Engineers, 2, pp. 222–235.
4.
Jaeger, J. C., 1942, “Moving Sources of Heat and the Temperature of Sliding Contacts,” Journal and Proceedings of the Royal Society of New South Wales, Sydney, pp. 203–224.
5.
Parker
,
R. C.
, and
Marshall
,
P. R.
,
1948
, “
The Measurement of the Temperature of Sliding Surfaces with Particular Reference to Railway Blocks
,”
Proc. Inst. Mech. Eng., London
,
158
, pp.
209
229
.
6.
Sibley, L. B., and Alien, C. M., 1961, “Friction and Wear Behavior of Refractory Materials at High Sliding Velocities and Temperatures,” ASME Paper 61-LUBS-15.
7.
Barber
,
J. R.
,
1967
, “
The Influence of Thermal Expansion on the Friction and Wear Process
,”
Wear
,
10
, pp.
155
159
.
8.
Barber
,
J. R.
,
1969
, “
Thermoelastic Instabilities in the Sliding of Conforming Solids
,”
Proc. R. Soc. London, Ser. A
,
312
, pp.
155
159
.
9.
Santini
,
J. J.
, and
Kennedy
, Jr.,
F. E.
,
1975
, “
Experimental Investigation of Surface Temperatures and Wear in Disk Brakes
,”
Lubr. Eng.
,
31
, pp.
402
417
.
10.
Kennedy
, Jr.,
F. E.
,
1984
, “
Thermal and Thermoelastic Effects in Dry Sliding
,”
Wear
,
100
, pp.
453
476
.
11.
Azarkhin
,
A.
, and
Barber
,
J. R.
,
1986
, “
Thermoelastic Instability for the Transient Contact Problem of Two Sliding Half-Planes
,”
ASME J. Appl. Mech.
,
53
, pp.
565
572
.
12.
Barber
,
J. R.
,
Beaumont
,
T. W.
,
Waring
,
J. R.
, and
Pritchard
,
C.
,
1985
, “
Implications of Thermoelastic Instability for the Design of Brakes
,”
ASME J. Tribol.
,
107
, pp.
206
210
.
13.
Ling
,
F. F.
, and
Mow
,
V. C.
,
1965
, “
Surface Displacement of a Convective Elastic Half-Space Under an Arbitrarily Distributed Fast-Moving Heat Source
,”
J. Basic Eng.
,
87
, pp.
811
817
.
14.
Korovchinski
,
M. V.
,
1965
, “
Plane Contact Problem of Thermoelasticity during Quasi-Stationary Heat Generation on the Contact Surface
,”
J. Basic Eng.
,
87
, pp.
811
817
.
15.
Anderson
,
R.
, and
Knapp
,
R. A.
,
1990
, “
Hot Spotting in Automotive Friction Systems
,”
Wear
,
135
, pp.
319
337
.
16.
Anderson, A., 1992, “Friction and Wear of Automotive Brakes,” ASM Handbook, Friction, Lubrication, and Wear Technology, 18, pp. 569–577.
17.
Ling
,
F. F.
, and
Simkins
,
T. E.
,
1963
, “
Measurement of Point Wise Junction Condition of Temperature at the Interface of Two Bodies in Sliding Contact
,”
J. Basic Eng.
,
85
, pp.
481
487
.
18.
Balakin
,
V. A.
,
1981
, “
Heat Flow Distribution and Combined Heat-Mass Transfer Processes at the Contact Interface of a Friction Pair
,”
J. Eng. Phys.
,
40
, pp.
660
665
.
19.
Crosberg
,
P.
, and
Mo¨lgaard
,
J.
,
1966
, “
Aspects of the Wear of Spinning Travellers: Division of Heat at Rubbing Surfaces
,”
Proc. Inst. Mech. Eng.
,
181
No. (3L), p.
16
16
.
20.
Quinn
,
T. F. J.
,
1978
, “
The Division of Heat and Surface Temperatures at Sliding Steel Interfaces and their Relation to Oxidation Wear
,”
ASLE Trans.
,
21
, pp.
78
86
.
21.
Berry
,
G. A.
, and
Barber
,
J. R.
,
1984
, “
Division of Frictional Heat: Guide to the Nature of Sliding Contact
,”
ASME J. Tribol.
,
106
, pp.
405
415
.
22.
Bowden
,
F. P.
, and
Thomas
,
P. M.
,
1954
, “
Surface Temperature of Sliding Solids
,”
Proc. R. Soc. London, Ser. A
,
223
, pp.
29
40
.
23.
Dow
,
T. A.
, and
Stockwell
,
R. D.
,
1977
, “
Experimental Verification of Thermoelastic Instabilities in Sliding Contact
,”
J. Lubr. Technol.
,
95
, pp.
359
364
.
24.
Furey, M. J., 1977, Experimental Study of Surface Temperatures Generated at the Solid-Solid Interface, Rep. VPI-E-77-27, Virginia Polytechnic Institute, Blacksburg, VA.
25.
Floquet
,
A.
, and
Play
,
D.
,
1981
, “
Contact Temperatures in Dry Bearings: Three-Dimensional Theory and Verification
,”
J. Lubr. Technol.
,
103
, pp.
243
252
.
26.
Jeelani
,
S.
,
1981
, “
Measurement of Temperature Distribution in Machining using IR Photography
,”
Wear
,
68
, pp.
191
202
.
27.
Wright
,
K.
, and
Trent
,
E. M.
,
1993
, “
Metallographic Methods of Determining Temperature Gradients in Cutting Tools
,”
J. Iron Steel Inst., London
,
211
, pp.
364
388
.
28.
Lim
,
S. C.
, and
Ashby
,
M. F.
,
1987
, “
Wear Mechanisms Maps
,”
Acta Metall.
,
35
, No.
1
, pp.
1
24
.
29.
Incropera, F. P., and Dewitt, D. P., 1996, Introduction to Heat Transfer, 3rd ed., p. 50.
30.
Parker
,
W. J.
,
Jenkins
,
R. J.
,
Butter
,
C. P.
, and
Abbott
,
G. L.
,
1961
, “
Flash Method of Determining Thermal Diffusivity, Heat capacity and Thermal Conductivity
,”
J. Appl. Phys.
,
32
, p.
1679
1679
.
31.
William
,
C. C.
, and
Wickramasinghe
,
H. K.
,
1986
, “
Scanning Thermal Profiler
,”
Appl. Phys. Lett.
,
49
, p.
1587
1587
.
32.
Oesterschulze
,
E.
, and
Stopka
,
M.
,
1996
, “
Photothermal Imaging by Scanning Thermal Microscopy
,”
J. Vac. Sci. Technol.
,
14
, No.
3
, p.
1172
1172
.
33.
Majumdar
,
A.
,
Carrejo
,
J. P.
, and
Lai
,
J.
,
1993
, “
Thermal Imaging Using the Atomic Force Microscope
,”
Appl. Phys. Lett.
,
62
, p.
2501
2501
.
34.
Pylkki
,
R. J.
,
Moyer
,
P. J.
, and
West
,
P. E.
,
1994
, “
Scanning Near-Field Optical Microscopy and Scanning Thermal Microscopy
,”
Jpn. J. Appl. Phys.
,
33
, pp.
3785
3790
.
35.
Reading, M. D., Hourston, J., Song, M., et al., 1998, “Thermal Analysis for the 21st Century,” American Lab., pp. 13–17.
36.
Wu
,
Z. L.
,
Thomas
,
M.
,
Kuo
,
P. K.
,
Lu
,
Y. S.
,
Stolz
,
C.
, and
Kozlowski
,
M.
,
1997
, “
Photothermal Characterization of Optical Thin Film Coating
,”
Opt. Eng.
,
36
, No.
1
, pp.
251
262
.
37.
Olmstead
,
M. A.
,
Amer
,
N. M.
,
Kohn
,
S.
,
Foumier
,
D.
, and
Boccara
,
A. C.
,
1983
, “
Photothermal Displacement Spectroscopy: an Optical Probe for Solids and Surfaces
,”
Appl. Phys. A
,
32
, p.
141
141
.
38.
Jackson
,
W. B.
,
Amer
,
N. M.
,
Boccara
,
A. C.
, and
Foumier
,
D.
,
1981
, “
Photothermal Deflection Spectroscopy and Detection
,”
Appl. Opt.
,
20
, pp.
1333
1344
.
39.
Monzyk, J., 1997, “Study of the Thermal Diffusivities of Carbons Using Optical Beam Deflection,” dissertation, Southern Illinois University at Carbondale, p. 2.
40.
Cahill
,
D. G.
,
Fisher
,
H. E.
,
Klitsner
,
T.
,
Swartz
,
E. T.
, and
Pohl
,
R. O.
,
1989
, “
Thermal Conductivity of Thin Films: Measurement and Understanding
,”
J. Vac. Sci. Technol.
,
7
, No.
3
, pp.
1259
1266
.
41.
Cahill
,
D. G.
,
1990
, “
Thermal Conductivity Measurement From 30 to 750 K: The 3q Method
,”
Rev. Sci. Instrum.
,
61
, pp.
802
808
.
42.
Lam
,
T. T.
, and
Yeung
,
W. K.
,
1995
, “
Inverse Determination of Thermal Conductivity for One Dimensional Problems
,”
J. Thermophys. Heat Transfer
,
9
, No.
2
, pp.
335
344
.
43.
Lykov, A. V., 1967, Teoriya teploprovodnosty, Vysshaya shkola, Moscow.
44.
Coninck
,
R. D.
,
1992
, “
Modulated Electron Beam Thermal Diffusivity Equipment
,”
Comp. Therm. Prop. Meas. Methods
,
2
, p.
315
315
.
45.
Teo, K. M., 2000, “Friction Transitions Studies and Thermal Property Impact on Surface Grooving (Temperature and Stress Modeling in Friction of Composite Particulates),” Master thesis, Southern Illinois University at Carbondale, pp. 26, 83.
46.
Carslaw, H. S., and Jaeger, J. C., 1959, Conduction of Heat in Solids, Oxford, London, p. 261.
47.
Fabbri
,
L.
, and
Fenici
,
P.
,
1995
, “
Three-Dimensional Photothermal Radiometry for the Determination of the Thermal Diffusivity of Solids
,”
Rev. Sci. Instrum.
,
66
, pp.
3593
3600
.
48.
Fabbri
,
L.
, and
Cernuschi
,
F.
,
1997
, “
Finite Laser Beam Size Effects in Thermal Wave Interferometry
,”
J. Appl. Phys.
,
82
, pp.
5305
5311
.
49.
Taylor R. E., and Groot, H., 1973, Data Presentation and Related General Information, “Thermophysical Properties of Matter,” Touloukian, Y. S., Powell, R. W., et al., eds., Plenum, New York, Vol. 10, p. 158.
50.
Tian
,
X.
, and
Kennedy
, Jr.,
F. E.
,
1994
, “
Maximum and Average Flash Temperatures in Sliding Contact
,”
ASME J. Tribol.
,
116
, pp.
167
174
.
You do not currently have access to this content.