The concept of a fractal-regular surface, with a dual-section power spectrum, has been implemented in an elastic-plastic contact analysis. Under certain assumptions, the analysis of individual fractal domains can be decoupled from that of the macroscopic shape. Due to the increase in the number of contacting fractal domains associated with a macroscopic contact expansion, the contact area-load relationship for fractal-regular surfaces is nearly linear, with a load exponent of 1-1.11, in contrast to 1-1.33 for fractal surfaces. Thus, the Amontons law of friction can be reasonably explained with fractal-regular surfaces under the assumption of a linear friction-area relationship. The distribution of the local real-to-apparent contact ratio in a nominally Hertzian contact was found to vary with the fractal dimension. The plastic contact ratio tends to be more uniformly distributed as the fractal dimension approaches unity.

1.
Amontons, G., 1699, “De la resistance caus’ee dans les machines,” Me´moires de l’Acade´mie Royale A, Chez Gerard Kuyper, Amsterdam, pp. 257–282.
2.
Bowden
,
F. P.
, and
Tabor
,
D.
,
1939
, “
The Area of Contact Between Stationary and Between Moving Surfaces
,”
Proc. R. Soc. London, Ser. A
,
169
, p.
391
391
.
3.
Bowden, F. P., and Tabor, D., 1950, Friction and Lubrication of Solids, Oxford University Press, U.K.
4.
Archard
,
J. F.
,
1951
, “
Elastic Deformation and the Contact of Surfaces
,”
Nature (London)
,
172
, pp.
918
919
.
5.
Ling
,
F. F.
,
1989
, “
The Possible Role of Fractal Geometry in Tribology
,”
Tribol. Trans.
,
32
, pp.
497
505
.
6.
Wang
,
S.
, and
Komvopoulos
,
K.
,
2000
, “
Static Friction and Initiation of Slip at Magnetic Head-Disk Interfaces
,”
ASME J. Tribol.
,
122
, pp.
246
256
.
7.
Homola
,
A. M.
,
Israelachvili
,
J. N.
,
McGuiggan
,
P. M.
, and
Gee
,
M. L.
,
1990
, “
Fundamental Experimental Studies in Tribology: the Transition From “Interfacial” Friction of Undamaged Molecularly Smooth Surfaces to “Normal” Friction with Wear
,”
Wear
,
136
, pp.
65
83
.
8.
Greenwood
,
J. A.
, and
Williamson
,
J. B. P.
,
1966
, “
Contact of Nominally Flat Surfaces
,”
Proc. R. Soc. London, Ser. A
,
295
, pp.
300
319
.
9.
Oden
,
P. I.
,
Majumdar
,
A.
,
Bhushan
,
B.
,
Padmanabhan
,
A.
, and
Graham
,
J. J.
,
1992
, “
AFM Imaging, Roughness Analysis and Contact Mechanics of Magnetic Tape and Head Surfaces
,”
ASME J. Tribol.
,
114
, pp.
666
674
.
10.
Sayles
,
R. S.
, and
Thomas
,
T. R.
,
1979
, “
Measurements of the Statistical Microgeometry of Engineering Surfaces
,”
ASME J. Lubr. Technol.
,
101
, pp.
409
418
.
11.
Greenwood, J. A., 1992, “Problems with Surface Roughness,” Fundamentals of Friction: Macroscopic and Microscopic Processes, Singer, I. L., and Pollock, H. M., eds., Kluwer Academic, Boston, MA, pp. 57–76.
12.
Mandelbrot, B. B., 1983, The Fractal Geometry of Nature, Freeman, New York, NY, pp. 1–83 and 116–118.
13.
Gagnepain
,
J. J.
, and
Roques-Carmes
,
C.
,
1986
, “
Fractal Approach to Two-Dimensional and Three-Dimensional Surface Roughness
,”
Wear
,
109
, pp.
119
126
.
14.
Majumdar
,
A.
, and
Tien
,
C. L.
,
1990
, “
Fractal Characterization and Simulation of Rough Surfaces
,”
Wear
,
136
, pp.
313
327
.
15.
Wang
,
S.
, and
Komvopoulos
,
K.
,
1994
, “
A Fractal Theory of the Interfacial Temperature Distribution in the Slow Sliding Regime: Part I—Elastic Contact and Heat Transfer Analysis
,”
ASME J. Tribol.
,
116
(
4
), pp.
812
823
.
16.
Majumdar
,
A.
, and
Bhushan
,
B.
,
1991
, “
Fractal Model of Elastic-Plastic Contact Between Rough Surfaces
,”
ASME J. Tribol.
,
113
(
1
), pp.
1
11
.
17.
Berry
,
M. V.
, and
Lewis
,
Z. V.
,
1980
, “
On the Weierstrass-Mandelbrot Fractal Function
,”
Proc. R. Soc. London, Ser. A
,
370
, pp.
459
484
.
18.
Wang
,
S.
, and
Komvopoulos
,
K.
,
1994
, “
A Fractal Theory of the Interfacial Temperature Distribution in the Slow Sliding Regime: Part II—Multiple Domains, Elastoplastic Contacts and Applications
,”
ASME J. Tribol.
,
116
(
4
), pp.
824
832
.
19.
Wang
,
S.
, and
Komvopoulos
,
K.
,
1995
, “
A Fractal Theory of the Temperature Distribution at Elastic Contacts of Fast Sliding Surfaces
,”
ASME J. Tribol.
,
117
(
2
), pp.
203
215
.
20.
Greenwood, J. A., 1999, “What Is an Asperity?,” Tribology of Information Storage Devices (TISD’99, Abstract Book), Santa Clara, California, Dec. 6–8, Institute of Physics, p. 20.
21.
Aramaki
,
H.
,
Cheng
,
H. S.
, and
Chung
,
Y.-W.
,
1993
, “
The Contact Between Rough Surfaces with Longitudinal Texture: Part I—Average Contact Pressure and Real Contact Area
,”
ASME J. Tribol.
,
115
, pp.
419
424
.
22.
Yan
,
W.
, and
Komvopoulos
,
K.
,
1998
, “
Contact Analysis of Elastic-Plastic Fractal Surfaces
,”
J. Appl. Phys.
,
84
, pp.
3617
3624
.
23.
Ye
,
N.
, and
Komvopoulos
,
K.
,
2001
, “
Elastic-Plastic Layered Media with Fractal Surface Topographies
,”
ASME J. Tribol.
,
123
(
3
), pp.
632
640
.
24.
Greenwood
,
J. A.
, and
Tripp
,
J. H.
,
1967
, “
The Elastic Contact of Rough Spheres
,”
ASME J. Appl. Mech.
,
34
, pp.
153
159
.
25.
Johnson, K. L., 1985, Contact Mechanics, Cambridge University Press, Cambridge, U.K., pp. 90–95, 171–179, 398–403, 416–422, and 427–428.
26.
Johnson
,
K. L.
,
Greenwood
,
J. A.
, and
Higginson
,
J. G.
,
1985
, “
The Contact of Elastic Regular Wavy Surfaces
,”
Int. J. Mech. Sci.
,
27
(
6
), pp.
383
396
.
27.
Ledermann, W., and Vajda, S., eds., 1982, Handbook of Applicable Mathematics, Vol. IV: Analysis, Wiley, New York, pp. 815–816.
You do not currently have access to this content.