In the chemical mechanical planarization of a copper-film silicon wafer, the average Reynolds equation with flow factors has also been developed for a cylindrical coordinate system to study the mixed lubrication. The pad’s elastic deformations are considered in the evaluation of the contact pressure arising at the interface of a pad’s asperity and the wafer. The normal force acting on the wafer by an abrasive particle is thus obtained in order to calculate the elastic and plastic deformations of the copper film with a thin passivation layer. A theoretical abrasive wear model is developed to evaluate the removal rate of the copper film. The increase in the real contact area of an abrasive, due to the frictional force produced at the interface by adhesive wear, is also taken into account. A nano tester was applied to measure the composite hardness and Young’s modulus of the copper-film wafer with a passivation layer. These two material properties are of importance in the calculation of wafer’s theoretical removal rate. Experimental results for the removal rates of the copper film are exhibited to compare with that predicted by the present theoretical model. Fairly good agreement exists in the trends of the removal rates varying in the radial direction and the mean removal rates evaluated at different operating conditions.

1.
Preston
,
F.
,
1927
, “
The Theory and Design of Plate Glass Polishing Machines
,”
J. Soc. Glass Technol.
,
11
, pp.
214
256
.
2.
Yu, T. K., Chris, C., and Lee, M. O., 1994, “Combined Asperity Contact and Fluid Flow Model for Chemical Mechanical Polishing,” IEEE, pp. 29–34.
3.
Runnels
,
S. R.
, and
Eyman
,
L. M.
,
1994
, “
Tribology Analysis of Chemical Mechanical Polishing
,”
J. Electrochem. Soc.
,
141
, pp.
1698
1701
.
4.
Runnels
,
S. R.
,
1994
, “
Tribology Analysis of Chemical Mechanical Polishing
,”
J. Electrochem. Soc.
,
141
, pp.
1698
1701
.
5.
Wang
,
D.
,
Lee
,
J.
,
Holland
,
K.
,
Bibby
,
T.
,
Beaudoin
,
S.
, and
Cale
,
T.
,
1999
, “
Von Mises Stress in Chemical-Mechanical Polishing Process
,”
J. Electrochem. Soc.
,
146
, pp.
253
255
.
6.
Tichy
,
J.
,
Levert
,
J. A.
,
Shan
,
L.
, and
Danyluk
,
S.
,
1999
, “
Contact Mechanics and Lubrication Hydrodynamics of Chemical Mechanical Polishing
,”
J. Electrochem. Soc.
,
146
, pp.
1523
1528
.
7.
Tseng
,
W. T.
, and
Wang
,
Y. L.
,
1997
, “
Re-Examination of Pressure and Speed Dependence of Removal Rate During Chemical-Mechanical Polishing Processes
,”
J. Electrochem. Soc.
,
144
, pp.
L15–L17
L15–L17
.
8.
Pak, K., Park, Y. R., Chung, U. I., Koh, Y. B., and Lee, M. Y., 1997, “A CMP Process Using a Fast Oxide Slurry,” Proc. Second Int. Chemical-Mechemical Planarization for ULSI Multilevel Interconnection Conf., Santa Clara, CA, pp. 299–306.
9.
Xu, R., Smart, G., and Zhang, M., 1999, “Particle Characteristics and Removal Rate in CMP Process,” Proc. Fourth Int. Chemical-Mechanical Planarization for ULSI Multilevel Interconnection Conf., Santa Clara, CA, pp. 253–255.
10.
Moon, Y., Park, I., and Dornfeld, D. A., 1998, “Mechanical Properties and Relationship to Process Performance of the Polishing Pad in Chemical Mechanical Polishing (CMP) of Silicon,” Proc. ASPE Spring Topical Meeting on Silicon Machining, pp. 83–87.
11.
Pohl
,
M. C.
, and
Griffiths
,
D. A.
,
1996
, “
The Importance of Particle Size to the Performance of Abrasive Particles in the CMP Processes
,”
J. Electron. Mater.
,
25
, pp.
1612
1616
.
12.
Jairath
,
P.
,
Farhas
,
C. K.
,
Huang
,
C. K.
,
Stell
,
M.
, and
Tzeng
,
S.
,
1994
, “
Chemical-Mechanical Polishing Process Manufacturability
,”
Solid State Technol.
,
37
, pp.
71
76
.
13.
Levert
,
J. A.
,
Baker
,
A. R.
,
Mess
,
F. M.
,
Salant
,
R. F.
,
Danyluk
,
S.
, and
Cook
,
L.
,
1998
, “
Mechanisms of Chemical-Mechanical Polishing of SiO2 Dielectricon Integrated Circuits
,”
Tribol. Trans.
,
41
, pp.
593
599
.
14.
Subramanian
,
R. S.
,
Zhang
,
L.
, and
Babu
,
S. V.
,
1999
, “
Transport Phenomena in Chemical Mechanical Polishing
,”
J. Electrochem. Soc.
,
146
(
11
), pp.
4263
4272
.
15.
Zhao, B., and Shi, F. G., 1999, “Chemical Mechanical Polishing in IC Processes: New Fundamental Insights,” Proc. Second Int. Chemical-Mechanical Planarization for ULSI Multilevel Interconnection Conf., Santa Clara, CA, pp. 13–22.
16.
Shi
,
F. G.
, and
Zhao
,
B.
,
1998
, “
Modeling of Chemical-Mechanical Polishing With Soft Pads
,”
Appl. Phys. A: Solids Surf.
,
67
, pp.
249
252
.
17.
Wu, G., and Cook, L., 1999, “Mechanism of Copper Damascene CMP,” Proc. Third Int. Chemical-Mechanical Planarization for ULSI Multilevel Interconnection Conf., Santa Clara, CA, pp. 13–22.
18.
Liu
,
C. W.
,
Dai
,
B. T.
,
Tseng
,
W. T.
, and
Yeh
,
C. F.
,
1996
, “
Modeling of the Wear Mechanism During Chemical-Mechanical Polishing
,”
J. Electrochem. Soc.
,
143
, pp.
715
721
.
19.
Luo
,
J. F.
, and
Dornfeld
,
D. A.
,
2001
, “
Material Removal Mechanism in Chemical Mechanical Polishing: Theory and Modeling
,”
IEEE Trans. Semicond. Manuf.
,
14
, pp.
112
133
.
20.
Ali
,
I.
,
Roy
,
S. R.
, and
Shinn
,
G.
,
1994
, “
Chemical-Mechanical Polishing of Interlayer Dielectric: A Review
,”
Solid State Technol.
,
37
, pp.
63
67
.
21.
Christensen
,
H.
,
1969
–1970, “
Stochastic Models for Hydrodynamic Lubrication of Rough Surfaces
,”
Proc. Inst. Mech. Eng.
,
184
, pp.
1013
1026
.
22.
Elrod
,
H. G.
,
1973
, “
Thin-Film Lubrication Theory for Newtonian Fluids Possessing Straited Roughness of Grooving
,”
ASME J. Lubr. Technol.
,
93
, pp.
324
330
.
23.
Patir
,
N.
, and
Cheng
,
H. S.
,
1979
, “
Application of Average Flow Model to Lubrication Between Rough Sliding Surfaces
,”
ASME J. Lubr. Technol.
,
101
, pp.
220
230
.
24.
Patir, N., 1978, “Effects of Surface Roughness on Partial Film Lubrication Using an Average Flow Model Based on Numerical Simulation,” Ph.D. thesis, Northwestern University, Evanston, IL.
25.
Yu, T. K., Yu, C. C., and Orlowski, M., 1993, “A Statistical Polishing Pad Model for Chemical Mechanical Polishing,” Proc. IEEE Int. Electron Devices Meeting, Washington, DC, pp. 865–868.
26.
Tichy
,
J.
,
Levert
,
J. A.
,
Shan
,
L.
, and
Danyluk
,
S.
,
1999
, “
Contact Mechanics and Lubrication Hydrodynamics of Chemical Mechanical Polishing
,”
J. Electrochem. Soc.
,
146
, pp.
1523
1528
.
27.
Liang
,
H.
,
Kaufman
,
F.
,
Sevilla
,
R.
, and
Anjur
,
S.
,
1997
, “
Wear Phenomena in Chemical Mechanical Polishing
,”
Wear
,
211
, pp.
271
279
.
28.
Gutmann
,
R.
,
Steigerwald
,
J.
,
You
,
L.
,
Price
,
D.
,
Neirynck
,
J.
,
Duquette
,
D.
, and
Murarka
,
S.
,
1995
, “
Chemical-Mechanical Polishing of Copper With Oxide and Polymer Inter-Level Dielectrics
,”
Thin Solid Films
,
270
, pp.
596
600
.
29.
Pourbaix, M., 1975, Atlas of Electrochemical Equilibria in Aqueous Solutions, NACE, Houston, TX.
30.
Pourbaix M., 1976, Lectures on Electrochemical Corrosion, Plenum Press, New York.
31.
Hirabayashi, H., Higuchi, M., Kinoshita, M., Hagasaka, H., Mase, K., and Oshima, J., 1996, “The Role of Complexing Agents in the CMP of Copper Thin Films,” Proceedings of the 1st International VMIC Specialty Conference on CMP Planarization, Santa Clara, CA, pp. 119–124.
32.
Timoshenko, S. P., and Goodier, J. N., 1970, Theory of Elasticity, McGraw-Hill, New York.
33.
Greenwood
,
J. A.
, and
Williamson
,
J. B. P.
,
1966
, “
Contact of Nominally Flat Surfaces
,”
Proc. R. Soc. London, Ser. A
,
300
, pp.
300
319
.
34.
Halling, J., and Nuri, K. A., 1975, Contact of Rough Surfaces of Working-Hardening Materials in the Mechanics of Contact Between Deformable Bodies, De Pater and K. Delft, eds., Cambridge University Press, New York and London.
35.
Chang
,
W. R.
,
Etsion
,
I.
, and
Bogy
,
D. B.
,
1987
, “
An Elastic-Plastic Model for the Contact of Rough Surface
,”
ASME J. Tribol.
,
109
, pp.
257
263
.
36.
Taber, D., 1951, The Hardness of Metal, Oxford University Press, Oxford.
37.
Zhang, F., Busnaina, A. A., Feng, J., and Fary, M. A., 1999, “Particle Adhesion Force in CMP and Subsequent Cleaning Processes,” Proc. Fourth Int. Chemical-Mechanical Planarization for ULSI Multilevel Interconnection Conf., Santa Clara, CA, pp. 61–64.
38.
McFarlane
,
J. S.
, and
Tabor
,
D.
,
1950
, “
Relation between Friction and Adhesion
,”
Proc. R. Soc. London, Ser. A
,
202
, pp.
244
253
.
39.
Burwell
,
J. T.
, and
Strang
,
C. D.
,
1952
, “
Metallic Wear
,”
Proc. R. Soc. London, Ser. A
,
212
, pp.
470
477
.
40.
Rowe
,
C. N.
,
1966
, “
Some Aspects of the Heat Adsorption in the Function of a Boundary Lubricant
,”
ASLE Trans.
,
9
, pp.
101
111
.
41.
Shan
,
L.
,
Levert
,
J.
,
Meade
,
L.
,
Tichy
,
J.
, and
Danyluk
,
S.
,
2000
, “
Interfacial Fluid Mechanics and Pressure Prediction in Chemical Mechanical Polishing
,”
ASME J. Tribol.
,
122
, pp.
539
543
.
42.
Levert
,
J. A.
,
Danyluk
,
S.
, and
Tichy
,
J.
,
2000
, “
Mechanism for Subambient Interfacial Pressure While Polishing With Liquids
,”
ASME J. Tribol.
,
122
, pp.
450
457
.
43.
Pharr
,
G. M.
,
Oliver
,
W. C.
, and
Brotzen
,
F. R.
,
1992
, “
On the Generality of the Relationship Among Contact Stiffness, Contact Area, and Elastic Modulus During Indentation
,”
Journal of Materials Research
,
7
(
3
), pp.
613
617
.
You do not currently have access to this content.