The statistical approach of describing rough surfaces is extended to include the contact of two rough surfaces in which their distribution of asperity heights can either be symmetric or asymmetric, and the asymmetry is modeled using the normalized Weibull distribution. In considering the contact between two rough surfaces, as in most practical applications, the contact can be approximated by an equivalent rough surface in contact with a smooth plane. The roughness parameters of the equivalent surface are obtained using the spectral moment method, and its validity is verified using realistic surface roughness measurements. This paper presents a method to obtain the equivalent rough surface with a Weibull distribution of asperity heights, in which the standard deviation and skewness parameters of asperity heights of the actual contacting surfaces are preserved. The advantages of this method are demonstrated via direct comparisons with a previously proposed method as well as with exact numerical simulation of the contact parameters of several different actual surfaces from magnetic storage and MEMS applications. For practical engineering applications, where the roughness parameters of each individual surface are known, contour plots for the skewness value of the equivalent rough surface are provided for practical ranges of combinations of standard deviation ratios and skewness values. As expected when the roughness of one of the contacting surfaces dominates, the skewness is solely determined by the rougher surface.

1.
Coulomb, C. A., 1785, “The´orie des Machines Simples, en ayant regard au Frottement de leurs Parties, et a la Roideur dews Cordages,” Mem. Math. Phys., X, Paris, pp. 161–342.
2.
Abbott
,
E. J.
, and
Firestone
,
F. A.
,
1933
, “
Specifying Surface Quality—A Method Based on Accurate Measurement and Comparison
,”
ASME Mech. Eng.
,
55
, pp.
569
572
.
3.
Liu
,
G.
,
Wang
,
Q. J.
, and
Lin
,
C.
,
1999
, “
A Survey of Current Models for Simulating the Contact between Rough Surfaces
,”
STLE Tribol. Trans.
,
42
, pp.
581
591
.
4.
Bhushan
,
B.
,
1996
, “
Contact Mechanics of Rough Surfaces in Tribology: Single Asperity Contact
,”
ASME J. of Appl. Mech. Rev.
,
49
, pp.
275
298
.
5.
Bhushan
,
B.
,
1998
, “
Contact Mechanics of Rough Surfaces in Tribology: Multiple Asperity Contact
,”
Tribol. Lett.
,
4
, pp.
1
35
.
6.
Greenwood
,
J. A.
, and
Williamson
,
J. P. B.
,
1966
, “
Contact of Nominally Flat Surfaces
,”
Proc. R. Soc. London, Ser. A
,
A295
, pp.
300
319
.
7.
McCool
,
J. I.
,
1986
, “
Comparison of Models for the Contact of Rough Surfaces
,”
Wear
,
107
, pp.
37
60
.
8.
Etsion
,
I.
, and
Amit
,
M.
,
1993
, “
The Effect of Small Normal Loads on the Static Friction Coefficient for Very Smooth Surfaces
,”
ASME J. Tribol.
,
115
, pp.
406
410
.
9.
Polycarpou
,
A. A.
, and
Etsion
,
I.
,
1998
, “
Comparison of the Static Friction Sub-Boundary Lubrication Model with Experimental Measurements on Thin Film Disks
,”
STLE Tribol. Trans.
41
(
2
), pp.
217
224
.
10.
Greenwood
,
J. A.
, and
Tripp
,
J. H.
,
1967
, “
The Elastic Contact of Rough Spheres
,”
Appl. Mech. Rev.
,
34
, pp.
153
159
.
11.
Bush
,
A. W.
,
Gibson
,
R. D.
, and
Keogh
,
G. P.
,
1979
, “
Strong Anisotropic Rough Surface
,”
ASME J. Tribol.
,
101
, pp.
15
20
.
12.
Chang
,
W. R.
,
Etsion
,
I.
, and
Bogy
,
D. B.
,
1987
, “
An Elastic-Plastic Model for the Contact of Rough Surfaces
,”
ASME J. Tribol.
,
109
, pp.
257
263
.
13.
Kogut
,
L.
, and
Etsion
,
I.
,
2003
, “
A Finite Element Based Elastic-Plastic Model for the Contact of Rough Surfaces
,”
STLE Tribol. Trans.
,
46
, pp.
383
390
.
14.
Greenwood, J. A., 1992, “Problem With Surface Roughness,” in Fundamental of Friction: Macroscopic and Microscopic Processes, Singer, I. L. and Pollock, H. M., ed., Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 57–76.
15.
Suh, A. Y., 2002, “Detailed Surface Roughness Techniques to Characterize Surfaces From Nano to Macro Scales,” M.S. thesis, University of Illinois, Urbana, IL.
16.
Whitehouse, D. J., 2003, Handbook of Surface and Nanometrology, Institute of Physics Publishing, Bristol, pp. 99.
17.
Yu
,
N.
, and
Polycarpou
,
A. A.
,
2002
, “
Contact of Rough Surfaces with Asymmetric Distribution of Asperity Heights
,”
ASME J. Tribol.
,
124
, pp.
367
376
.
18.
McCool
,
J. I.
,
1992
, “
Non-Gaussian Effects in Microcontact
,”
Int. J. Mach. Tools Manuf.
,
32
(
1
), pp.
115
123
.
19.
Adler
,
R. J.
, and
Firman
,
D.
,
1981
, “
A Non-Gaussian Model for Random Surfaces
,”
Philos. Trans. R. Soc. London, Ser. A
,
A303
, pp.
433
462
.
20.
Kotwal
,
C. A.
, and
Bhushan
,
B.
,
1996
, “
Contact Analysis of Non-Gaussian Surfaces for Minimum Static and Kinetic Friction and Wear
,”
STLE Tribol. Trans.
,
39
, pp.
890
898
.
21.
Greenwood
,
J. A.
, and
Tripp
,
J. H.
,
1971
, “
The Contact of Two Nominally Flat Rough Surfaces
,”
Proc. Inst. Mech. Eng.
,
185
, pp.
625
633
.
22.
O’Callaghan
,
M.
, and
Cameron
,
M. A.
,
1976
, “
Static Contact Under Load between Nominally Flat Surface in which Deformation is Purely Elastic
,”
Wear
,
36
, pp.
79
97
.
23.
Longuet-Higgins
,
M. S.
,
1957
, “
The Statistical Analysis of a Random Moving Surfaces
,”
Philos. Trans. R. Soc. London
,
A249
, pp.
321
387
.
24.
Francis
,
H. A.
,
1977
, “
Application of Spherical Indentation Mechanics to Reversible and Irreversible Contact between Rough Surfaces
,”
Wear
,
45
, pp.
221
269
.
25.
Bush
,
A. W.
,
Gibson
,
R. D.
, and
Thomas
,
T. R.
,
1975
, “
The Elastic Contact of a Rough Surface
,”
Wear
,
35
, pp.
87
111
.
26.
McCool
,
J. I.
,
1987
, “
Relating Profile Instrument Measurements to the Functional Performance of Rough Surfaces
,”
ASME J. Tribol.
,
109
, pp.
264
270
.
27.
Bush
,
A. W.
,
Gibson
,
R. D.
, and
Keogh
,
G. P.
,
1976
, “
The Limits of Elastic Deformation in the Contact of Rough Surfaces
,”
Mech. Res. Commun.
,
3
, pp.
169
174
.
28.
Nayak
,
P. R.
,
1973
, “
Random Process Model of Rough Surfaces
,”
ASME J. Lubr. Technol.
,
93
(
3
), pp.
398
407
.
29.
Sayles
,
R. S.
, and
Thomas
,
T. R.
,
1979
, “
Measurement of the Statistical Microgeometry of Engineering Surfaces
,”
ASME J. Lubr. Technol.
,
101
, pp.
409
417
.
30.
Tallian
,
T. F.
,
1972
, “
The Theory of Partial Elastohydrodynamic Contacts
,”
Wear
,
21
, pp.
49
101
.
31.
Bhushan, B., 1990, Tribology and Mechanics of Magnetic Storage Device, Springer, New York, pp. 604–605.
32.
Kral
,
E. R.
,
Komvopoulos
,
K.
, and
Bogy
,
D. B.
,
1996
, “
Hardness of Thin-Film Media: Scratch Experiments and Finite Element Simulations
,”
ASME J. Tribol.
,
118
, pp.
1
11
.
33.
Bhushan, B., 1999, Handbook of Micro/Nano Tribology, CRC Press, New York, pp. 769–770, 822.
You do not currently have access to this content.