The effect of surface texture and roughness on shear and pressure forces in tribological applications in the lubrication regime is analyzed by means of lattice-Boltzmann simulations that take the geometry of real surface elements into account. Topographic data on representative surface structures are obtained with high spatial resolution with the application of an optical interference technique. The three-dimensional velocity field past these surfaces is computed for laminar flow of Newtonian fluids in the continuum regime. Subsequently, pressure and shear flow factors are obtained by evaluating the velocity field in accordance with the extended Reynolds equation of Patir and Cheng (1978, ASME J. Tribol., 100, pp. 12–17). The approach allows an efficient determination of the hydrodynamic characteristics of microstructured surfaces in lubrication. Especially, the influence of anisotropy of surface texture on the hydrodynamic load capacity and friction is determined. The numerical method used in the present work is verified for a simplified model configuration, the flow past a channel with sinusoidal walls. The results obtained indicate that full numerical simulations should be used to accurately and efficiently compute the characteristic properties of film flows past rough surfaces and may therefore contribute to a better understanding and prediction of tribological problems.

1.
Jacob
,
B.
,
Venner
,
C. H.
, and
Lugt
,
P. P.
, 2004, “
Influence of Longitudinal Roughness on Friction in EHL Contacts
,”
ASME J. Tribol.
0742-4787,
126
, pp.
473
481
.
2.
Knoll
,
G.
, and
Lagemann
,
V.
, 2002, “
Simulationsverfahren zur tribologischen Kennwertbildung rauer Oberflächen, Teil 1—Einfluss der bearbeitungsbedingten Oberfläche auf die hydrodynamische Tragfähigkeit geschmierter Kontakte
,”
Tribol. Schmierungstech.
0724-3472,
49
, pp.
12
15
.
3.
Richard
,
F. S.
, and
Rocke
,
A. H.
, 2004, “
Hydrodynamic Analysis of the Flow in a Rotary Lip Seal Using Flow Factors
,”
ASME J. Tribol.
0742-4787,
126
, pp.
156
161
.
4.
Sharif
,
K. J.
,
Evans
,
H. P.
,
Snidle
,
R. W.
, and
Newall
,
J. P.
, 2004, “
Modelling of Film Thickness and Traction in a Variable Ration Traction Drive Rig
,”
ASME J. Tribol.
0742-4787,
126
, pp.
92
104
.
5.
Lin
,
Y.
, and
Ovaert
,
T. C.
, 2004, “
A Rough Surface Model for General Anisotropic Materials
,”
ASME J. Tribol.
0742-4787,
126
, pp.
41
49
.
6.
Patir
,
M.
, and
Cheng
,
H. S.
, 1978, “
An Average Flow Model for Determining Effects of Three-Dimensional Roughness on Partial Hydrodynamic Lubrication
,”
ASME J. Tribol.
0742-4787,
100
, pp.
12
17
.
7.
Patir
,
M.
, and
Cheng
,
H. S.
, 1979, “
Application of Average Flow Model to Lubrication Between Rough Sliding Surfaces
,”
ASME J. Tribol.
0742-4787,
101
, pp.
220
230
.
8.
Kane
,
M.
, and
Bou-Said
,
B.
, 2004, “
Comparison of Homogenization and Direct Techniques for the Treatment of Roughness in Incompressibile Lubrication
,”
ASME J. Tribol.
0742-4787,
126
, pp.
733
737
.
9.
Buscalglia
,
G. C.
, and
Jai
,
M.
, 2004, “
Homogenization of the Generalized Reynolds Equation for Ultra-Thin Gas Films and Its Resolution by FEM
,”
ASME J. Tribol.
0742-4787,
126
, pp.
547
552
.
10.
Letalleur
,
N.
,
Plouraboue
,
F.
, and
Prat
,
M.
, 2002, “
Average Flow Model of Rough Surface Lubrication: Flow Factors for Sinusoidal Surfaces
,”
ASME J. Tribol.
0742-4787,
124
, pp.
539
545
.
11.
Prat
,
M.
,
Plouraboue
,
F.
, and
Letalleur
,
N.
, 2002, “
Averaged Reynolds Equation for Flow Between Rough Surfaces in Sliding Motion
,”
Transp. Porous Media
0169-3913,
48
, pp.
291
313
.
12.
Xu
,
G.
, and
Sadeghi
,
F.
, 1996, “
Thermal Analysis of Circular Contacts With Measured Roughness
,”
ASME J. Tribol.
0742-4787,
113
, pp.
473
483
.
13.
Kim
,
W. T.
,
Jhon
,
M.
,
Zhou
,
Y.
,
Staroselsky
,
I.
, and
Chen
,
H.
, 2005, “
Nanoscale Air Bearing Modelling via Lattice Boltzmann Method
,”
J. Appl. Phys.
0021-8979,
97
,
10P304
.
14.
Huang
,
W.
,
Bogy
,
D.
, and
Garcia
,
A.
, 1997, “
Three-Dimensional Direct Simulation Monte-Carlo Method for Slider Air Bearings
,”
Phys. Fluids
1070-6631
9
(
6
), pp.
1764
1769
.
15.
Plote
,
H.
, 1997, “
Zur Berechnung thermoelastohydrodynamischer Kontakte
,” Ph.D. thesis, Clausthal University.
16.
Schwarze
,
H.
, and
Decker
,
P.
, 2003, “
Simulation der Schmierungsverhältnisse am kleinen Pleuelauge
,”
Tribol. Schmierungstech.
0724-3472,
50
(
1
), pp.
17
24
.
17.
Wiersch
,
P.
, 2004, “
Berechnung thermo-elastohydrodynamischer Kontakte
,” Ph.D. thesis, Clausthal University.
18.
Patankar
,
S. V.
, and
Spalding
,
D. B.
, 1972, “
A Calculation Procedure for Heat, Mass, and Momentum Transfer in Three-Dimensional Parabolic Flows
,”
Int. J. Heat Mass Transfer
0017-9310,
15
, pp.
1787
1806
.
19.
Frisch
,
U.
,
Hasslacher
,
B.
, and
Pomeau
,
Y.
, 1986, “
Lattice-Gas Automata for the Navier-Stokes Equation
,”
Phys. Rev. Lett.
0031-9007,
56
(
14
), pp.
1505
1508
.
20.
He
,
X.
, and
Luo
,
L. S.
, 1997, “
A Priori Derivation of the Lattice Boltzmann Equation
,”
Phys. Rev. E
1063-651X,
55
(
6
), pp.
R6333
R6336
.
21.
He
,
X.
, and
Luo
,
L. S.
, 1997, “
Theory of the Lattice Boltzmann Method: From the Boltzmann Equation to the Lattice Boltzmann Equation
,”
Phys. Rev. E
1063-651X,
56
(
6
), pp.
6811
6817
.
22.
McNamara
,
G. R.
, and
Zanetti
,
G.
, 1988, “
Use of the Boltzmann Equation to Simulate Lattice Gas Automata
,”
Phys. Rev. Lett.
0031-9007,
61
, pp.
2332
2335
.
23.
Chen
,
S.
,
Wang
,
Z.
,
Shan
,
X.
, and
Doolen
,
G. D.
, 1992, “
Lattice Boltzmann Computational Fluid Dynamics in Three Dimensions
,”
J. Stat. Phys.
0022-4715,
68
, pp.
379
400
.
24.
Chen
,
S.
, and
Doolen
,
G. D.
, 1998, “
Lattice Boltzmann Method for Fluid Flows
,”
Annu. Rev. Fluid Mech.
0066-4189,
30
, pp.
329
364
.
25.
Zhou
,
Q.
, and
He
,
X.
, 1995, “
On Pressure and Velocity Boundary Conditions for the Lattice Boltzmann BGK Model
,” Nonlinear Science e-Print Archive, comp-gas/958001.
26.
He
,
X.
,
Zhou
,
Q.
,
Luo
,
L. S.
, and
Dembo
,
M.
, 1997, “
Analytic Solutions of Simple Flows and Analysis of Nonslip Boundary Conditions for the Lattice Boltzmann BGK Model
,”
J. Stat. Phys.
0022-4715,
87
(
1/2
), pp.
115
136
.
27.
Gallivan
,
A.
,
Noble
,
D. R.
,
Georgiadis
,
J. G.
, and
Buckius
,
R. O.
, 1997, “
An Evaluation of the Bounce-Back Boundary Condition for Lattice Boltzmann Simulations
,”
Int. J. Numer. Methods Fluids
0271-2091,
25
, pp.
249
263
.
28.
Yu
,
D.
,
Mei
,
R.
,
Luo
,
L. S.
, and
Shyy
,
W.
, 2003, “
Viscous Flow Computation With the Method of Lattice Boltzmann Equation
,”
Prog. Aerosp. Sci.
0376-0421,
39
, pp.
329
367
.
29.
Hu
,
J.
, and
Leutheusser
,
H.
, 1997, “
Micro-Inertial effects in Laminar Thin-Film Flow Past a Sinusoidal Wall
,”
ASME J. Tribol.
0742-4787,
119
, pp.
211
216
.
30.
Al Zoubi
,
A.
, 2005, “
Numerical Simulation of Flows in Complex Geometries Using the Lattice Boltzmann Method
,” Ph.D. thesis, Clausthal University.
You do not currently have access to this content.