A finite element model (FEM) is used to investigate the effect of roughness on the frictional energy dissipation for an elastic contact subjected to simultaneous normal and tangential oscillations. Frictional energy losses are correlated against the maximum tangential load as a power-law where the exponents show the degree of nonlinearity. Individual asperity is shown to undergo similar stick–slip cycles during a loading period. Taller asperities are found to contribute significantly to the total energy dissipation and dominate the trends in the total energy dissipation. The authors' observations for spherical contacts are extended to the rough surface contact, which shows that power-law exponent depends on stick durations individual asperity contacts experience. A theoretical model for energy dissipation is then validated with the FEM, for both spherical and rough surface contacts. The model is used to study the influence of roughness parameters (asperity density, height distribution, and fractal dimension) on magnitude of energy dissipation and power-law exponents. Roughness parameters do not influence the power-law exponents. For a phase difference of π/2 between normal and tangential oscillations, the frictional energy dissipation shows quadratic dependence on the tangential fluctuation amplitude, irrespective of the roughness parameters. The magnitude of energy dissipation is governed by the real area of contact and, hence, depends on the surface roughness parameters. Larger real area of contact results in more energy under similar loading conditions.

References

1.
Mindlin
,
R. D.
,
Mason
,
W. P.
,
Osmer
,
T. F.
, and
Deresiewicz
,
H.
,
1952
, “
Effects of an Oscillating Tangential Force on the Contact Surfaces of Elastic Spheres
,”
First U.S. National Congress of Applied Mechanics
,
Chicago, IL
, June 11–16, pp.
203
208
.
2.
Mindlin
,
R. D.
, and
Deresiewicz
,
H.
,
1953
, “
Elastic Spheres in Contact Under Varying Oblique Forces
,”
ASME J. Appl. Mech.
,
20
, pp.
327
344
.
3.
Johnson
,
K. L.
,
1962
, “
Discussion: ‘Energy Dissipation in Contact Friction: Constant Normal and Cyclic Tangential Loading’ (Goodman, L. E., and Brown, C. B., 1962, ASME J. Appl. Mech., 29, pp. 17–22)
,”
ASME J. Appl. Mech.
,
29
(
4
), p.
763
.
4.
Segalman
,
D. J.
,
Bergman
,
L. A.
, and
Starr
,
M. J.
,
2006
, “
Joints Workshop 2006 Final Report
,” NSF & Sandia National Laboratories, Arlington, VA, Report No. 2007-7761.
5.
Segalman
,
D. J.
,
Gregory
,
D. L.
,
Starr
,
M. J.
,
Resor
,
B. R.
,
Jew
,
M. D.
, and
Lauffer
,
J. P.
,
2009
,
Handbook on Dynamics of Jointed Structures
,
Sandia National Laboratories
,
Albuquerque, NM
.
6.
Eriten
,
M.
,
Polycarpou
,
A. A.
, and
Bergman
,
L. A.
,
2011
, “
Effects of Surface Roughness and Lubrication on the Early Stages of Fretting of Mechanical Lap Joints
,”
Wear
,
271
(
11–12
), pp.
2928
2939
.
7.
Jang
,
Y. H.
, and
Barber
,
J. R.
,
2011
, “
Effect of Phase on the Frictional Dissipation in Systems Subjected to Harmonically Varying Loads
,”
Eur. J. Mech., A: Solids
,
30
(
3
), pp.
269
274
.
8.
Barber
,
J. R.
,
Davies
,
M.
, and
Hills
,
D. A.
,
2011
, “
Frictional Elastic Contact With Periodic Loading
,”
Int. J. Solids Struct.
,
48
(
13
), pp.
2041
2047
.
9.
Putignano
,
C.
,
Ciavarella
,
M.
, and
Barber
,
J. R.
,
2011
, “
Frictional Energy Dissipation in Contact of Nominally Flat Rough Surfaces Under Harmonically Varying Loads
,”
J. Mech. Phys. Solids
,
59
(
12
), pp.
2442
2454
.
10.
Davies
,
M.
,
Barber
,
J. R.
, and
Hills
,
D. A.
,
2012
, “
Energy Dissipation in a Frictional Incomplete Contact With Varying Normal Load
,”
Int. J. Mech. Sci.
,
55
(
1
), pp.
13
21
.
11.
Barber
,
J. R.
,
2012
, “
Frictional Systems Under Periodic Loads—History-Dependence, Non-Uniqueness and Energy Dissipation
,”
J. Phys.: Conf. Ser.
,
382
(
1
), p.
012002
.
12.
Patil
,
D. B.
, and
Eriten
,
M.
,
2015
, “
Frictional Energy Dissipation in Spherical Contacts Under Presliding: Effect of Elastic Mismatch, Plasticity and Phase Difference in Loading
,”
ASME J. Appl. Mech.
,
82
(
1
), p.
011005
.
13.
Popov
,
M.
,
Popov
,
V. L.
, and
Pohrt
,
R.
,
2014
, “
Relaxation Damping in Oscillating Contacts
,” e-print arXiv:1410.3238 Cond-Mat.
14.
Greenwood
,
J. A.
, and
Williamson
,
J. B. P.
,
1966
, “
Contact of Nominally Flat Surfaces
,”
Proc. R. Soc. London, Ser. A
,
295
(
1442
), pp.
300
319
.
15.
Archard
,
J. F.
,
1957
, “
Elastic Deformation and the Laws of Friction
,”
Proc. R. Soc. London, Ser. A
,
243
(
1233
), pp.
190
205
.
16.
Persson
,
B. N. J.
,
Bucher
,
F.
, and
Chiaia
,
B.
,
2002
, “
Elastic Contact Between Randomly Rough Surfaces: Comparison of Theory With Numerical Results
,”
Phys. Rev. B
,
65
(
18
), p.
184106
.
17.
Persson
,
B. N. J.
,
2001
, “
Elastoplastic Contact Between Randomly Rough Surfaces
,”
Phys. Rev. Lett.
,
87
(
11
), p.
116101
.
18.
Yang
,
C.
, and
Persson
,
B. N. J.
,
2008
, “
Contact Mechanics: Contact Area and Interfacial Separation From Small Contact to Full Contact
,”
J. Phys.: Condens. Matter
,
20
(
21
), p.
215214
.
19.
Persson
,
B. N. J.
,
2006
, “
Contact Mechanics for Randomly Rough Surfaces
,”
Surf. Sci. Rep.
,
61
(
4
), pp.
201
227
.
20.
Persson
,
B. N. J.
,
2007
, “
Relation Between Interfacial Separation and Load: A General Theory of Contact Mechanics
,”
Phys. Rev. Lett.
,
99
(
12
), p.
125502
.
21.
Hyun
,
S.
, and
Robbins
,
M. O.
,
2007
, “
Elastic Contact Between Rough Surfaces: Effect of Roughness at Large and Small Wavelengths
,”
Tribol. Int.
,
40
(
10–12
), pp.
1413
1422
.
22.
Campañá
,
C.
,
Persson
,
B. N. J.
, and
Müser
,
M. H.
,
2011
, “
Transverse and Normal Interfacial Stiffness of Solids With Randomly Rough Surfaces
,”
J. Phys.: Condens. Matter
,
23
(
8
), p.
085001
.
23.
Akarapu
,
S.
,
Sharp
,
T.
, and
Robbins
,
M. O.
,
2011
, “
Stiffness of Contacts Between Rough Surfaces
,”
Phys. Rev. Lett.
,
106
(
20
), p.
204301
.
24.
Pohrt
,
R.
,
Popov
,
V. L.
, and
Filippov
,
A. E.
,
2012
, “
Normal Contact Stiffness of Elastic Solids With Fractal Rough Surfaces for One- and Three-Dimensional Systems
,”
Phys. Rev. E
,
86
(
2
), p.
026710
.
25.
Pohrt
,
R.
, and
Popov
,
V. L.
,
2012
, “
Normal Contact Stiffness of Elastic Solids With Fractal Rough Surfaces
,”
Phys. Rev. Lett.
,
108
(
10
), p.
104301
.
26.
Pohrt
,
R.
, and
Popov
,
V. L.
,
2013
, “
Contact Stiffness of Randomly Rough Surfaces
,”
Sci. Rep.
,
3
, p.
3293
.
27.
Medina
,
S.
,
Nowell
,
D.
, and
Dini
,
D.
,
2013
, “
Analytical and Numerical Models for Tangential Stiffness of Rough Elastic Contacts
,”
Tribol. Lett.
,
49
(
1
), pp.
103
115
.
28.
Eriten
,
M.
,
Polycarpou
,
A. A.
, and
Bergman
,
L. A.
,
2010
, “
Surface Roughness Effects on Energy Dissipation in Fretting Contact of Nominally Flat Surfaces
,”
ASME J. Appl. Mech.
,
78
(
2
), p.
021011
.
29.
Pohrt
,
R.
, and
Popov
,
V. L.
,
2013
, “
Contact Mechanics of Rough Spheres: Crossover From Fractal to Hertzian Behavior
,”
Adv. Tribol.
,
2013
, p.
e974178
.
30.
Chandrasekar
,
S.
,
Eriten
,
M.
, and
Polycarpou
,
A. A.
,
2012
, “
An Improved Model of Asperity Interaction in Normal Contact of Rough Surfaces
,”
ASME J. Appl. Mech.
,
80
(
1
), p.
011025
.
31.
Leonard
,
B. D.
,
Sadeghi
,
F.
,
Shinde
,
S.
, and
Mittelbach
,
M.
,
2013
, “
Rough Surface and Damage Mechanics Wear Modeling Using the Combined Finite-Discrete Element Method
,”
Wear
,
305
(
1–2
), pp.
312
321
.
32.
Dini
,
D.
, and
Hills
,
D. A.
,
2009
, “
Frictional Energy Dissipation in a Rough Hertzian Contact
,”
ASME J. Tribol.
,
131
(
2
), p.
021401
.
33.
Yang
,
L.
, and
Martini
,
A.
,
2013
, “
Nano-Scale Roughness Effects on Hysteresis in Micro-Scale Adhesive Contact
,”
Tribol. Int.
,
58
, pp.
40
46
.
34.
Ambrico
,
J. M.
, and
Begley
,
M. R.
,
2000
, “
Plasticity in Fretting Contact
,”
J. Mech. Phys. Solids
,
48
(
11
), pp.
2391
2417
.
35.
Dassault Systèmes
,
2013
, “
Abaqus Theory Manual (6.12)
,” Dassault Systèmes Simulia Corp., Providence, RI, Last accessed Nov. 9, 2013, http://eriten-04:2080/v6.12/books/stm/default.htm
36.
Perić
,
D.
, and
Owen
,
D. R. J.
,
1992
, “
Computational Model for 3-D Contact Problems With Friction Based on the Penalty Method
,”
Int. J. Numer. Methods Eng.
,
35
(
6
), pp.
1289
1309
.
37.
Qiu
,
X.
,
Plesha
,
M. E.
, and
Meyer
,
D. W.
,
1991
, “
Stiffness Matrix Integration Rules for Contact-Friction Finite Elements
,”
Comput. Methods Appl. Mech. Eng.
,
93
(
3
), pp.
385
399
.
38.
Etsion
,
I.
,
2010
, “
Revisiting the Cattaneo–Mindlin Concept of Interfacial Slip in Tangentially Loaded Compliant Bodies
,”
ASME J. Tribol.
,
132
(
2
), p.
020801
.
39.
Zolotarevskiy
,
V.
,
Kligerman
,
Y.
, and
Etsion
,
I.
,
2011
, “
Elastic–Plastic Spherical Contact Under Cyclic Tangential Loading in Pre-Sliding
,”
Wear
,
270
(
11–12
), pp.
888
894
.
40.
Zolotarevskiy
,
V.
,
Kligerman
,
Y.
, and
Etsion
,
I.
,
2011
, “
The Evolution of Static Friction for Elastic–Plastic Spherical Contact in Pre-Sliding
,”
ASME J. Tribol.
,
133
(
3
), p.
034502
.
41.
Ovcharenko
,
A.
,
Halperin
,
G.
, and
Etsion
,
I.
,
2008
, “
Experimental Study of Adhesive Static Friction in a Spherical Elastic–Plastic Contact
,”
ASME J. Tribol.
,
130
(
2
), p.
021401
.
42.
Yu
,
N.
, and
Polycarpou
,
A. A.
,
2001
, “
Contact of Rough Surfaces With Asymmetric Distribution of Asperity Heights
,”
ASME J. Tribol.
,
124
(
2
), pp.
367
376
.
43.
Cowles
,
B. A.
,
1989
, “
High Cycle Fatigue in Aircraft Gas Turbines—An Industry Perspective
,”
Int. J. Fract.
,
80
(
2–3
), pp.
147
163
.
44.
Ciavarella
,
M.
,
1998
, “
The Generalized Cattaneo Partial Slip Plane Contact Problem. I—Theory
,”
Int. J. Solids Struct.
,
35
(
18
), pp.
2349
2362
.
45.
Ciavarella
,
M.
,
1998
, “
The Generalized Cattaneo Partial Slip Plane Contact Problem. II—Examples
,”
Int. J. Solids Struct.
,
35
(
18
), pp.
2363
2378
.
46.
Jaüger
,
J.
,
1998
, “
A New Principle in Contact Mechanics
,”
ASME J. Tribol.
,
120
(
4
), pp.
677
684
.
47.
Stingl
,
B.
,
Ciavarella
,
M.
, and
Hoffmann
,
N.
,
2013
, “
Frictional Dissipation in Elastically Dissimilar Oscillating Hertzian Contacts
,”
Int. J. Mech. Sci.
,
72
, pp.
55
62
.
48.
Eriten
,
M.
,
2012
, “
Multiscale Physics-Based Modeling of Friction
,” Ph.D. thesis, University of Illinois at Urbana-Champaign, Champaign, IL.
49.
Johnson
,
K. L.
,
1987
,
Contact Mechanics
,
Cambridge University Press
,
Cambridge, UK
.
50.
Majumdar
,
A.
, and
Bhushan
,
B.
,
1990
, “
Role of Fractal Geometry in Roughness Characterization and Contact Mechanics of Surfaces
,”
ASME J. Tribol.
,
112
(
2
), pp.
205
216
.
51.
Lee
,
C.-H.
, and
Polycarpou
,
A. A.
,
2007
, “
Static Friction Experiments and Verification of an Improved Elastic–Plastic Model Including Roughness Effects
,”
ASME J. Tribol.
,
129
(
4
), pp.
754
760
.
52.
Lee
,
C.-H.
,
Eriten
,
M.
, and
Polycarpou
,
A. A.
,
2010
, “
Application of Elastic–Plastic Static Friction Models to Rough Surfaces With Asymmetric Asperity Distribution
,”
ASME J. Tribol.
,
132
(
3
), p.
031602
.
You do not currently have access to this content.