The exact calculation of contact stresses below the surface is the basis for optimizing load capacity of heavily loaded rolling–sliding contacts. The level of stress is significantly influenced by the normal pressure distribution within the contact area, which occurs as a result of the transferred normal force and the contact geometry. In this paper, a new method for high resolution pressure calculation of large contact areas is presented. By this, measured surface topography can be taken into account. The basis of the calculation method is the half-space theory according to Boussinesq/Love. Instead of regular grids, optimized meshing strategies are applied to influence the calculation efforts for large contact areas. Two objectives are pursued with the targeted meshing strategy: on the one hand, the necessary resolution for measured surface structures can be realized; while on the other hand, the total number of elements is reduced by a coarse grid in the surrounding areas. In this way, rolling–sliding contacts with large contact areas become computable with conventional simulation computers. Using the newly developed “method of combined solutions,” the overall result is finally composed by the combination of section of separate solutions, which are calculated by consecutively shifting the finely meshed segment over the entire contact area. The vital advancement in this procedure is the introduction of irregular grids, through which the cross influences are not neglected and fully regarded for every separate calculation. The presented methodology is verified stepwise in comparison to the Hertzian theory. The influence of irregular grids on the calculation quality is examined in particular. Finally, the calculation approach is applied to a real disk-on-disk rolling contact based on measured surface topography.

References

1.
Hertz
,
H.
,
1882
, “
Über die Berührung Fester Elastischer Körper
,”
Crelle’s J.
,
92
, pp.
156
171
.
2.
Boussinesq
,
J.
,
1885
,
Application des Potentiels à l'étude de l'équilibre et du Mouvement des Solides Élastiques
,
Gauthier-Villars
, Paris.
3.
Love
,
A. E. H.
,
1929
, “
The Stress Produced in a Semi-Infinite Solid by Pressure on Part of the Boundary
,”
Philos. Trans. R. Soc. London, Ser. A
,
228
(
659–669
), pp.
377
420
.
4.
Brandt
,
A.
, and
Lubrecht
,
A.
,
1990
, “
Multilevel Matrix Multiplication and Fast Solution of Integral Equations
,”
J. Comput. Phys.
,
90
(
2
), pp.
348
370
.
5.
Venner
,
C. H.
, and
Lubrecht
,
A. A.
,
2000
,
Multilevel Methods in Lubrication
,
Elsevier
,
New York/Amsterdam
.
6.
Ju
,
Y.
, and
Farris
,
T.
,
1996
, “
Spectral Analysis of Two-Dimensional Contact Problems
,”
ASME J. Tribol.
,
118
(
2
), pp.
320
328
.
7.
Liu
,
S.
,
Wang
,
Q.
, and
Liu
,
G.
,
2000
, “
A Versatile Method of Discrete Convolution and FFT (DC–FFT) for Contact Analyses
,”
Wear
,
243
(
1–2
), pp.
101
111
.
8.
Hartnett
,
M.
,
1979
, “
The Analysis of Contact Stresses in Rolling Element Bearings
,”
ASME J. Lubr. Technol.
,
101
(
1
), pp.
105
109
.
9.
Wang
,
F. S.
,
Block
,
J. M.
,
Chen
,
W. W.
,
Martini
,
A.
,
Zhou
,
K.
,
Keer
,
L. M.
, and
Wang
,
Q. J.
,
2009
, “
A Multilevel Model for Elastic–Plastic Contact Between a Sphere and a Flat Rough Surface
,”
ASME J. Tribol.
,
131
(
2
), p.
021409
.
10.
Lubrecht
,
A. A.
, and
Ioannides
,
E.
,
1991
, “
A Fast Solution of the Dry Contact Problem and the Associated Sub-Surface Stress Field Using Multilevel Techniques
,”
ASME J. Tribol.
,
113
(
1
), pp.
128
133
.
11.
Xiong
,
S.
,
Lin
,
C.
,
Wang
,
Y.
,
Liu
,
W. K.
, and
Wang
,
Q. J.
,
2010
, “
An Efficient Elastic Displacement Analysis Procedure for Simulating Transient Conformal-Contact Elastohydrodynamic Lubrication Systems
,”
ASME J. Tribol.
,
132
(
2
), p.
021502
.
12.
Brunetiere
,
N.
, and
Wang
,
Q.
,
2014
, “
Large-Scale Simulation of Fluid Flows for Lubrication of Rough Surfaces
,”
ASME J. Tribol.
,
136
(
1
), p.
011701
.
13.
Redlich
,
A.
,
2002
,
Simulation von Punktkontakten unter Mischreibungsbedingungen. Fortschritte in der Maschinenkonstruktion
,
Shaker
, Aachen,
Germany
.
14.
Yu
,
C.
,
Wang
,
Z.
,
Sun
,
F.
,
Lu
,
S.
,
Keer
,
L. M.
, and
Wang
,
Q. J.
,
2013
, “
A Deterministic Semi-Analytical Model for the Contact of a Wafer and a Rough Bi-Layer Pad in CMP
,”
ECS J. Solid State Sci. Technol.
,
9
(
2
), pp.
368
374
.
15.
Bartel
,
D.
,
2001
, “
Berechnung von Festkörper- und Mischreibung bei Metallpaarungen
,” Ph.D. dissertation, University of Magdeburg, Magdeburg, Germany.
16.
Allwood
,
J.
,
2005
, “
Survey and Performance Assessment of Solution Methods for Elastic Rough Contact Problems
,”
ASME J. Tribol.
,
127
(
1
), pp.
10
23
.
17.
Bartel
,
D.
,
2010
,
Simulation von Tribosystemen: Grundlagen und Anwendungen
,
Vieweg + Teubner
, Wiesbaden,
Germany
.
18.
Becker
,
A.
,
1990
, “
Numerische Berechnung des Kontaktes beliebig gekrümmter Körper unter besonderer Berücksichtigung der Einflußgrößen des Rad-Schiene-Systems
,” Ph.D. dissertation, University of Bochum, Bochum, Germany.
19.
Bartel
,
D.
,
Bobach
,
L.
,
Illner
,
T.
, and
Deters
,
L.
,
2012
, “
Simulating Transient Wear Characteristics of Journal Bearings Subjected to Mixed Friction
,”
Proc. Inst. Mech. Eng., Part J
,
226
(
12
), pp.
1095
1108
.
20.
Bobach
,
L.
,
Beilicke
,
R.
,
Bartel
,
D.
, and
Deters
,
L.
,
2012
, “
Thermal Elastohydrodynamic Simulation of Involute Spur Gears Incorporating Mixed Friction
,”
Tribol. Int.
,
48
, pp.
191
206
.
21.
Chiu
,
Y.
, and
Hartnett
,
M.
,
1983
, “
A Numerical Solution for Layered Solid Contact Problems With Application to Bearings
,”
ASME J. Lubr. Technol.
,
105
(
4
), pp.
585
590
.
22.
Bugiel
,
C.
,
2009
,
Tribologisches Verhalten und Tragfähigkeit PVD-beschichteter Getriebe-Zahnflanken
,
Apprimus-Verl.
, Aachen,
Germany
.
23.
Hurasky-Schönwerth
,
O.
,
2004
,
Einsatzverhalten von PVD-Beschichtungen und Biologisch Schnell Abbaubaren Synthetischen Estern im Tribologischen System des Zahnflankenkontaktes
,
Shaker
, Aachen,
Germany
.
24.
Shannon
,
C.
,
1949
, “
Communication in the Presence of Noise
,”
Proc. IRE
,
37
(
1
), pp.
10
21
.
You do not currently have access to this content.