Constitutive and dynamic relations for friction coefficient are presented. A first thrust combines the laws of thermodynamics to relate heat, energy, matter, entropy, and work of forces. The equation sums multiple terms—each with a differential of a variable multiplied by a coefficient—to zero. Thermodynamic considerations suggest that two variables, internal energy and entropy production, must depend on the others. Linear independence of differentials renders equations that yield thermodynamic quantities, properties, and forces as functions of internal energy and entropy production. When applied to a tribocontrol volume, constitutive laws for normal and friction forces, and coefficient of friction are derived and specialized for static and kinetic coefficients of friction. A second thrust formulates dynamics of sliding, with friction coefficient and slip velocity as state variables. Differential equations derived via Newton's laws for velocity and the degradation entropy generation (DEG) theorem for friction coefficient model changes to the sliding interface induced by friction dissipation. The solution suggests that the transition from static to kinetic coefficient of friction with respect to slip velocity for lubricant starved sliding is a property of the motion dynamics of sliding interacting with the dynamics of change of the surface morphology. Finally, sliding with stick-slip was simulated to compare this model to others.
Skip Nav Destination
Article navigation
October 2016
Research-Article
On Constitutive Relations for Friction From Thermodynamics and Dynamics
Michael D. Bryant
Michael D. Bryant
Professor
Fellow ASME
Mechanical Engineering,
University of Texas at Austin,
Austin, TX 78712–0292
e-mail: bryantmd@austin.utexas.edu
Fellow ASME
Mechanical Engineering,
University of Texas at Austin,
Austin, TX 78712–0292
e-mail: bryantmd@austin.utexas.edu
Search for other works by this author on:
Michael D. Bryant
Professor
Fellow ASME
Mechanical Engineering,
University of Texas at Austin,
Austin, TX 78712–0292
e-mail: bryantmd@austin.utexas.edu
Fellow ASME
Mechanical Engineering,
University of Texas at Austin,
Austin, TX 78712–0292
e-mail: bryantmd@austin.utexas.edu
Contributed by the Tribology Division of ASME for publication in the JOURNAL OF TRIBOLOGY. Manuscript received June 23, 2015; final manuscript received July 19, 2015; published online July 14, 2016. Assoc. Editor: Sinan Muftu.
J. Tribol. Oct 2016, 138(4): 041603 (8 pages)
Published Online: July 14, 2016
Article history
Received:
June 23, 2015
Revised:
July 19, 2015
Citation
Bryant, M. D. (July 14, 2016). "On Constitutive Relations for Friction From Thermodynamics and Dynamics." ASME. J. Tribol. October 2016; 138(4): 041603. https://doi.org/10.1115/1.4032821
Download citation file:
Get Email Alerts
Cited By
Static Characteristics of Hybrid Water-Lubricated Herringbone Groove Journal Bearing
J. Tribol (April 2025)
Related Articles
Frictional Hysteresis Model for Stick–Slip Behavior of Magnetorheological Elastomer Under Various Magnetic Field Strengths
J. Tribol (May,2018)
Dynamics of Coupled Oscillators Excited by Dry Friction
J. Comput. Nonlinear Dynam (July,2008)
Related Proceedings Papers
Related Chapters
Stick-Slip Simulation and Detection in Mechanical Face Seals
Advances in Multidisciplinary Engineering
Influence of Lubrication on Wear and Friction on O-Rings in Contact with Yellow Metal
Hydraulic Failure Analysis: Fluids, Components, and System Effects
Comparing Probabilistic Graphical Model Based and Gaussian Process Based Selections for Predicting the Temporal Observations
Intelligent Engineering Systems through Artificial Neural Networks, Volume 20