This paper presents mathematical expressions to identify the existence of localized surface defects on the raceways of the deep groove ball bearings. For the formulation of the mathematical expressions, matrix method of dimensional analysis based on force, length, time, and temperature (FLTϴ) system of unis is used. The model is based on the complete set of physical dimensions and operating parameters of the deep groove ball bearing in that the spall size is directly allied with vibration responses. The formulated governing model equations are solved numerically by applying a scheme of empirical modeling through multiple factorial regression analysis. Experiments are performed on the laboratory test rig to verify the results obtained from the developed model equations. For the experiments, deep groove ball bearings designated as SKF 6307 are used. These bearings are having artificially induced square-shaped surface defects of different sizes on the outer and inner races and are analyzed for different operating speeds. A good similarity between the predicted numerical values and the experimental results is noticed. This study showed that the proposed methodology can be successfully used for the characterization of the localized surface defects on the raceways of the deep groove ball bearings.

References

1.
Piersol
,
A. G.
, and
Paez
,
T. L.
,
2010
,
Harris' Shock and Vibration Handbook
, 6th ed.,
McGraw-Hill
,
New York
.
2.
El-Thalji
,
I.
, and
Jantunen
,
E.
,
2015
, “
A Summary of Fault Modelling and Predictive Health Monitoring of Rolling Element Bearings
,”
J. Mech. Syst. Signal Process.
,
60–61
, pp.
252
272
.
3.
Jamadar
,
I. M.
, and
Vakharia
,
D. P.
,
2016
, “
A Numerical Model for the Identification of the Structural Damages in Rolling Contact Bearings Using Matrix Method of Dimensional Analysis
,”
ASME J. Tribol.
,
138
(
2
), p.
021106
.
4.
Massimo
,
C.
, and
Alberto
,
I.
,
2002
, “
Analysis of Damage of Ball Bearings of Aeronautical Transmissions by Auto-Power Spectrum and Cross-Power Spectrum
,”
ASME J. Vib. Acoust.
,
124
(
2
), pp.
180
185
.
5.
Jang
,
G. H.
, and
Jeong
,
S. W.
,
2003
, “
Stability Analysis of a Rotating System Due to the Effect of Ball Bearing Waviness
,”
ASME J. Tribol.
,
125
(
1
), pp.
91
101
.
6.
Choy
,
F. K.
,
Zhou
,
J.
,
Braun
,
M. J.
, and
Wang
,
L.
,
2005
, “
Vibration Monitoring and Damage Quantification of Faulty Ball Bearings
,”
ASME J. Tribol.
,
127
(
4
), pp.
776
783
.
7.
Mevel
,
B.
, and
Guyader
,
J. L.
,
2008
, “
Experiments on Routes to Chaos in Ball Bearings
,”
J. Sound Vib.
,
318
(
3
), pp.
549
564
.
8.
Karacay
,
T.
, and
Akturk
,
N.
,
2009
, “
Experimental Diagnostics of Ball Bearings Using Statistical and Spectral Methods
,”
J. Tribol. Int.
,
42
(
6
), pp.
836
843
.
9.
Changqing
,
B.
,
Hongyan
,
Z.
, and
Qingyu
,
X.
,
2010
, “
Experimental and Numerical Studies on Nonlinear Dynamic Behavior of Rotor System Supported by Ball Bearings
,”
ASME J. Eng. Gas Turbines Power.
,
132
(8), p. 082502.
10.
Patil
,
M. S.
,
Mathew
,
J.
,
Rajendrakumar
,
P. K.
, and
Desai
,
S.
,
2010
, “
A Theoretical Model to Predict the Effect of Localized Defect on Vibrations Associated With Ball Bearing
,”
Int. J. Mech. Sci.
,
52
(
9
), pp.
1193
1201
.
11.
Patil
,
M. S.
,
Mathew
,
J.
, and
Rajendrakumar
,
P. K.
,
2010
, “
Experimental Studies Using Response Surface Methodology for Condition Monitoring of Ball Bearings
,”
ASME J. Tribol.
,
132
(
4
), p.
044505
.
12.
Kankar
,
P. K.
,
Sharma
,
S. C.
, and
Harsha
,
S. P.
,
2011
, “
Fault Diagnosis of Ball Bearings Using Continuous Wavelet Transform
,”
J. Appl. Soft Comput.
,
11
(
2
), pp.
2300
2312
.
13.
Jing
,
L.
,
Yimin
,
S.
, and
Teik
,
C. L.
,
2012
,”
Vibration Analysis of Ball Bearings With a Localized Defect Applying Piecewise Response Function
,”
J. Mech. Mach. Theory.
,
56
, pp.
156
169
.
14.
Brian
,
T. H.
, and
Robert
,
X. G.
,
2000
, “
Vibration Analysis of a Sensor-Integrated Ball Bearing
,”
ASME J. Vib. Acoust.
,
122
(
4
), pp.
384
392
.
15.
Kankar
,
P. K.
,
Sharma
,
S. C.
, and
Harsha
,
S. P.
,
2011
, “
Fault Diagnosis of High Speed Rolling Element Bearings Due to Localized Defects Using Response Surface Method
,”
ASME J. Dyn. Syst. Meas. Control.
,
133
(
3
), p.
031007
.
16.
Patel
,
V. N.
,
Tandon
,
N.
, and
Pandey
,
R. K.
,
2010
, “
A Dynamic Model for Vibration Studies of Deep Groove Ball Bearings Considering Single and Multiple Defects in Races
,”
ASME J. Tribol.
,
132
(
4
), p.
041101
.
17.
Arslan
,
H.
, and
Aktürk
,
N.
,
2008
, “
An Investigation of Rolling Element Vibrations Caused by Local Defects
,”
ASME J. Tribol.
,
130
(
4
), p.
041101
.
18.
Ashtekar
,
A.
,
Sadeghi
,
F.
, and
Stacke
,
L.
,
2008
, “
A New Approach to Modeling Surface Defects in Bearing Dynamics Simulations
,”
ASME J. Tribol.
,
130
(
4
), p.
041103
.
19.
Ashtekar
,
A.
, and
Sadeghi
,
F.
,
2011
, “
Experimental and Analytical Investigation of High Speed Turbocharger Ball Bearings
,”
ASME J. Eng. Gas Turbines Power.
,
133
(
12
), p.
122501
.
20.
Sidra
,
K.
,
Dutt
,
J. K.
, and
Tandon
,
N.
,
2014
, “
Extracting Rolling Element Bearing Faults From Noisy Vibration Signal Using Kalman Filter
,”
ASME J. Vib. Acoust.
,
136
(3), p. 031008.
21.
Desavale
,
R. G.
,
Kanai
,
R. A.
,
Chavan
,
S. P.
,
Venkatachalam
,
R.
, and
Jadhav
,
P. M.
,
2015
, “
Vibration Characteristics Diagnosis of Roller Bearing Using the New Empirical Model
,”
ASME J. Tribol.
,
138
(
1
), p.
011103
.
22.
Wang
,
W.
,
Zhang
,
S.
,
Zhao
,
Z.
, and
Ai
,
S.
,
2015
, “
Effect of the Inhomogeneity in Races on the Dynamic Behavior of Rolling Bearing
,”
ASME J. Vib. Acoust.
,
137
(
6
), p.
061015
.
23.
Niu
,
L.
,
Cao
,
H.
,
He
,
Z.
, and
Li
,
Y.
,
2014
, “
Dynamic Modeling and Vibration Response Simulation for High Speed Rolling Ball Bearings With Localized Surface Defects in Raceways
,”
ASME J. Manuf. Sci. Eng.
,
136
(
4
), p.
041015
.
24.
Gibbings
,
J. C.
,
2011
,
Dimensional Analysis
,
Springer-Verlag
,
London
.
25.
Thomas
,
S.
,
2007
,
Applied Dimensional Analysis and Modeling
, 2nd ed.,
Butterworth-Heinemann
,
Waltham, MA
.
26.
Choudhury
,
A.
, and
Tandon
,
N.
,
2006
, “
Vibration Response of Rolling Element Bearings in a Rotor Bearing System to a Local Defect Under Radial Load
,”
ASME J. Tribol.
,
128
(
2
), pp.
252
261
.
27.
Harris
,
T. A.
,
1996
,
Rolling Bearing Analysis
, 5th ed.,
Wiley
,
New York
.
28.
Sujatha
,
C.
,
2010
,
Vibration and Acoustics-Measurement and Signal Analysis
, 1st ed.,
Tata McGraw-Hill
,
New Delhi, India
.
You do not currently have access to this content.