In multiparticle simulations of industrial granular systems such as hoppers, tumblers, and mixers, the particle energy dissipation is governed by an important input parameter called the coefficient of restitution (COR). Oftentimes, the wall thickness in these systems is on the order of a particles diameter or less. However, the COR value implemented in event-driven simulations is either constant or a monotonically decreasing function of the impact velocity. The present work experimentally investigates the effect of wall thickness on the COR through sphere–thin plate elastoplastic impacts and elucidates the underlying impact phenomena. Experiments were performed on 0.635 cm and 0.476 cm diameter (d) spheres of various materials impacting aluminum 6061 plates of different thicknesses (t) with the low impact velocities up to 3.1 m/s. Besides COR, indentation measurements and numerical simulations are performed to gain a detailed understanding of the contact process and energy dissipation mechanism. As the “t/d” ratio decreases, a considerable amount of energy is dissipated into flexural vibrations leading to a significantly lower COR value. Based on the results, it can be concluded that using a constant COR input value in particle simulations may not always be an appropriate choice, especially, in the case of thin plates. However, these new COR results validate that when the wall thickness is more than twice the sphere diameter (i.e., t/d > 2), a constant COR value obtained for an impact with semi-infinite plate can be reasonably used.

References

1.
Bertrand
,
F.
,
Leclaire
,
L.-A.
, and
Levecque
,
G.
,
2005
, “
DEM-Based Models for the Mixing of Granular Materials
,”
Chem. Eng. Sci.
,
60
(
8
), pp.
2517
2531
.
2.
Radjaï
,
F.
, and
Dubois
,
F.
,
2011
,
Discrete-Element Modeling of Granular Materials
,
Wiley/ISTE
,
Hoboken, NJ
.
3.
Ketterhagen
,
W. R.
,
Curtis
,
J. S.
, and
Wassgren
,
C. R.
,
2005
, “
Stress Results From Two-Dimensional Granular Shear Flow Simulations Using Various Collision Models
,”
Phys. Rev. E
,
71
(
6
), p.
061307
.
4.
Dahl
,
S.
,
Clelland
,
R.
, and
Hrenya
,
C.
,
2003
, “
Three-Dimensional, Rapid Shear Flow of Particles With Continuous Size Distributions
,”
Powder Technol.
,
138
(
1
), pp.
7
12
.
5.
Clelland
,
R.
, and
Hrenya
,
C.
,
2002
, “
Simulations of a Binary-Sized Mixture of Inelastic Grains in Rapid Shear Flow
,”
Phys. Rev. E
,
65
(
3
), p.
031301
.
6.
Anand
,
A.
,
Curtis
,
J. S.
,
Wassgren
,
C. R.
,
Hancock
,
B. C.
, and
Ketterhagen
,
W. R.
,
2008
, “
Predicting Discharge Dynamics From a Rectangular Hopper Using the Discrete Element Method (DEM)
,”
Chem. Eng. Sci.
,
63
(
24
), pp.
5821
5830
.
7.
Ketterhagen
,
W. R.
,
Curtis
,
J. S.
,
Wassgren
,
C. R.
,
Kong
,
A.
,
Narayan
,
P. J.
, and
Hancock
,
B. C.
,
2007
, “
Granular Segregation in Discharging Cylindrical Hoppers: A Discrete Element and Experimental Study
,”
Chem. Eng. Sci.
,
62
(
22
), pp.
6423
6439
.
8.
McCarthy
,
J.
,
Jasti
,
V.
,
Marinack
,
M.
, and
Higgs
,
C.
,
2010
, “
Quantitative Validation of the Discrete Element Method Using an Annular Shear Cell
,”
Powder Technol.
,
203
(
1
), pp.
70
77
.
9.
Jasti
, V
. K.
, and
Higgs
,
C. F.
,
2010
, “
A Fast First Order Model of a Rough Annular Shear Cell Using Cellular Automata
,”
Granular Matter
,
12
(
1
), pp.
97
106
.
10.
Marinack
,
M. C.
, and
Higgs
,
C. F.
,
2011
, “
The Inclusion of Friction in Lattice-Based Cellular Automata Modeling of Granular Flows
,”
ASME J. Tribol.
,
133
(
3
), p.
031302
.
11.
Marinack
,
M. C.
, and
Higgs
,
C. F.
,
2015
, “
Three-Dimensional Physics-Based Cellular Automata Model for Granular Shear Flow
,”
Powder Technol.
,
277
, pp.
287
302
.
12.
Marinack
,
M. C.
,
Mpagazehe
,
J. N.
, and
Higgs
,
C. F.
,
2012
, “
An Eulerian, Lattice-Based Cellular Automata Approach for Modeling Multiphase Flows
,”
Powder Technol.
,
221
, pp.
47
56
.
13.
Dougherty
,
P. S.
,
Marinack
,
M. C.
,
Patil
,
D.
,
Evans
,
R. D.
, and
Higgs
,
C. F.
,
2016
, “
The Influence of W-DLC and CrxN Thin Film Coatings on Impact Damage Between Bearing Materials
,”
Tribol. Trans.
,
59
(
6
), pp.
1104
1113
.
14.
Patil
,
D.
,
Marinack
,
M. C.
, Jr.
,
DellaCorte
,
C.
, and
Higgs
,
C. F.
, III
, 2017, “
Experimental Investigations of the Superelastic Impact Performance of Nitinol 60
,”
Tribol. Trans.
,
60
(4), pp. 615–620.
15.
Goldsmith
,
W.
, and
Frasier
,
J.
,
1961
,
Impact: The Theory and Physical Behavior of Colliding Solids
, Vol.
28
,
Dover Publications
,
Mineola, NY
.
16.
Tabor
,
D.
,
1948
, “
A Simple Theory of Static and Dynamic Hardness
,”
Proc. R. Soc. London, Ser. A
,
192
(
1029
), pp.
247
274
.
17.
Johnson
,
K. L.
,
1987
,
Contact Mechanics
,
Cambridge University Press
,
Cambridge, UK
.
18.
Kharaz
,
A.
, and
Gorham
,
D.
,
2000
, “
A Study of the Restitution Coefficient in Elastic–Plastic Impact
,”
Philos. Mag. Lett.
,
80
(
8
), pp.
549
559
.
19.
Koller
,
M.
, and
Kolsky
,
H.
,
1987
, “
Waves Produced by the Elastic Impact of Spheres on Thick Plates
,”
Int. J. Solids Struct.
,
23
(
10
), pp.
1387
1400
.
20.
Vincent
,
J.
,
1900
, “
Experiments on Impact
,”
Proc. Cambridge Philos. Soc.
,
8
, pp.
332
357
.
21.
Reed
,
J.
,
1985
, “
Energy Losses Due to Elastic Wave Propagation During an Elastic Impact
,”
J. Phys. D: Appl. Phys.
,
18
(
12
), pp.
2329
2337
.
22.
Raman
,
C.
,
1920
, “
On Some Applications of Hertz's Theory of Impact
,”
Phys. Rev.
,
15
(
4
), pp.
277
284
.
23.
Tillett
,
J.
,
1954
, “
A Study of the Impact of Spheres on Plates
,”
Proc. Phys. Soc. Sect. B
,
67
(
9
), pp.
677
688
.
24.
Zener
,
C.
,
1941
, “
The Intrinsic Inelasticity of Large Plates
,”
Phys. Rev.
,
59
(
8
), pp.
669
673
.
25.
Sondergaard
,
R.
,
Chaney
,
K.
, and
Brennen
,
C.
,
1990
, “
Measurements of Solid Spheres Bouncing Off Flat Plates
,”
ASME J. Appl. Mech.
,
112
(
3
), pp.
694
699
.
26.
Marinack
,
M. C.
, Jr.
,
Musgrave
,
R. E.
, and
Higgs
,
C. F.
, III
,
2013
, “
Experimental Investigations on the Coefficient of Restitution of Single Particles
,”
Tribol. Trans.
,
56
(
4
), pp.
572
580
.
27.
Patil
,
D.
, and
Higgs
,
C. F.
, III
,
2017
, “
Critical Plate Thickness for Energy Dissipation During Sphere–Plate Elastoplastic Impact Involving Flexural Vibrations
,”
ASME J. Tribol.
,
139
(
4
), p.
041104
.
28.
Zygo
,
2010
, “
MetroPro Reference Guide, OMP-0347L
,”
Zygo Corp.
, Middlefield, CT.http://zeus.phys.uconn.edu/halld/diamonds/Zygo/MetroPro_docs/MetroPro%20Reference%20Guide%200347_K.pdf
29.
Montaine
,
M.
,
Heckel
,
M.
,
Kruelle
,
C.
,
Schwager
,
T.
, and
Pöschel
,
T.
,
2011
, “
Coefficient of Restitution as a Fluctuating Quantity
,”
Phys. Rev. E
,
84
(
4
), p.
041306
.
30.
Marinack
,
M. C.
,
Jasti
, V
. K.
,
Choi
,
Y. E.
, and
Higgs
,
C. F.
,
2011
, “
Couette Grain Flow Experiments: The Effects of the Coefficient of Restitution, Global Solid Fraction, and Materials
,”
Powder Technol.
,
211
(
1
), pp.
144
155
.
31.
Kolsky
,
H.
,
1963
,
Stress Waves in Solids
, Vol.
1098
,
Dover Publications
,
Mineola, NY
.
32.
Müller
,
P.
,
Heckel
,
M.
,
Sack
,
A.
, and
Pöschel
,
T.
,
2013
, “
Complex Velocity Dependence of the Coefficient of Restitution of a Bouncing Ball
,”
Phys. Rev. Lett.
,
110
(
25
), p.
254301
.
33.
Weir
,
G.
, and
Tallon
,
S.
,
2005
, “
The Coefficient of Restitution for Normal Incident, Low Velocity Particle Impacts
,”
Chem. Eng. Sci.
,
60
(
13
), pp.
3637
3647
.
34.
ANSYS
, 2012, “
ANSYS Academic Research, Release 14.5, Help System, ANSYS Theory Reference Guide
,” ANSYS, Inc., Canonsburg, PA.
35.
Hertz
,
H.
,
1882
, “
Über die berührung fester elastischer Körper (On the Contact of Solid Elastic Bodies)
,”
J. Reine Angew. Math.
,
92
, pp.
156
171
.
36.
Jackson
,
R. L.
, and
Green
,
I.
,
2005
, “
A Finite Element Study of Elasto-Plastic Hemispherical Contact Against a Rigid Flat
,”
ASME J. Tribol.
,
127
(
2
), pp.
343
354
.
37.
Ghaednia
,
H.
,
Marghitu
,
D. B.
, and
Jackson
,
R. L.
,
2014
, “
Predicting the Permanent Deformation After the Impact of a Rod With a Flat Surface
,”
ASME J. Tribol.
,
137
(
1
), p.
011403
.
38.
Kraus
,
D.
,
2014
, “
Consolidated Data Analysis and Presentation Using an Open-Source Add-In for the Microsoft Excel® Spreadsheet Software
,”
Med. Writing
,
23
(
1
), pp.
25
28
.
You do not currently have access to this content.