Abstract
This paper presents the performance behaviors (coefficient of friction, minimum film thickness, and pressure distributions) of a fluid film thrust bearing using a newly conceived micro-texture on pads. In the numerical investigation, the Reynolds equation has been discretized using the finite element formulation followed by the solution of algebraic equations employing the Fischer-Burmeister-Newton-Schur (FBNS) algorithm, which satisfies the mass-conservation phenomenon arising due to the commencement of cavitation in the lubricating film. The effects of parameters (micro-texture/pocket depth, circumferential/radial length of micro-texture and pocket, etc.) of new texture on the performance behaviors of the thrust bearing have been explored and presented herein for the range of input data. It has been found that the minimum film thickness has increased up to 48%, and the friction coefficient reduced up to 24% in comparison to conventional plain pad case.