Abstract

Based on oil monitoring technology to collect friction and wear parameters, the failure modes of key friction pairs in wind turbine gearboxes can be evaluated and classified. However, the collected data of failures caused by friction and wear are generally small, which limits the application of machine learning in the monitoring or evaluation of the critical friction pairs of wind turbine gearboxes. To verify the feasibility of machine learning in this application, algorithms including decision tree (DT), random forest (RF), k-nearest neighbors (k-NN), and support vector machine (SVM) are implemented, in the context of a small dataset of 424 samples of normal, adhesive, fatigue, and cutting wear for outcome classification. Compared with k-NN and SVM, DT and RF perform better on both training and test samples. The two models identified the key factors and their quantified values associated with failure state, including ferromagnetic particles, viscosity, iron content, and external hard particle silicon. The classifiers developed in this work classified failure state with an average accuracy of 96%, thus offering an accurate decision support tool for classification and evaluation of the friction pair wear state of wind turbine gearboxes.

References

1.
Salameh
,
J. P.
,
Cauet
,
S.
,
Etien
,
E.
,
Sakout
,
A.
, and
Rambault
,
L.
,
2018
, “
Gearbox Condition Monitoring in Wind Turbines: A Review
,”
Mech. Syst. Sig. Process.
,
111
, pp.
251
264
. 10.1016/j.ymssp.2018.03.052
2.
Wind Europe
,
2017
,
Wind in Power: 2016 European Statistics
,
Wind Europe
,
Brussels, Belgium
.
3.
Fan
,
B.
,
Li
,
B.
,
Feng
,
S.
,
Mao
,
J.
, and
Xie
,
Y.-B.
,
2017
, “
Modeling and Experimental Investigations on the Relationship Between Wear Debris Concentration and Wear Rate in Lubrication Systems
,”
Tribol. Int.
,
109
, pp.
114
123
. 10.1016/j.triboint.2016.12.015
4.
Zhu
,
Y.
,
Zhu
,
C.
,
Song
,
C.
,
Li
,
Y.
,
Chen
,
X.
, and
Yong
,
B.
,
2019
, “
Improvement of Reliability and Wind Power Generation Based on Wind Turbine Real-Time Condition Assessment
,”
Int. J. Electr. Power Energy Syst.
,
113
, pp.
344
354
. 10.1016/j.ijepes.2019.05.027
5.
Zhu
,
J.
,
Yoon
,
J. M.
,
He
,
D.
, and
Bechhoefer
,
E.
,
2015
, “
Online Particle-Contaminated Lubrication Oil Condition Monitoring and Remaining Useful Life Prediction for Wind Turbines
,”
Wind Energy
,
18
(
6
), pp.
1131
1149
. 10.1002/we.1746
6.
Li
,
C.
,
Sanchez
,
R.-V.
,
Zurita
,
G.
,
Cerrada
,
M.
,
Cabrera
,
D.
, and
Vásquez
,
R. E.
,
2016
, “
Gearbox Fault Diagnosis Based on Deep Random Forest Fusion of Acoustic and Vibratory Signals
,”
Mech. Syst. Sig. Process.
,
76
, pp.
283
293
. 10.1016/j.ymssp.2016.02.007
7.
Elasha
,
F.
,
Greaves
,
M.
,
Mba
,
D.
, and
Fang
,
D.
,
2017
, “
A Comparative Study of the Effectiveness of Vibration and Acoustic Emission in Diagnosing a Defective Bearing in a Planetry Gearbox
,”
Appl. Acoust.
,
115
, pp.
181
195
. 10.1016/j.apacoust.2016.07.026
8.
Lolli
,
F.
,
Balugani
,
E.
,
Ishizaka
,
A.
,
Gamberini
,
R.
,
Rimini
,
B.
, and
Regattieri
,
A.
,
2019
, “
Machine Learning for Multi-Criteria Inventory Classification Applied to Intermittent Demand
,”
Prod. Plan. Control
,
30
(
1
), pp.
76
89
. 10.1080/09537287.2018.1525506
9.
Li
,
Z.
,
Wu
,
X.
,
Liu
,
F.
,
Fu
,
Y.
, and
Chen
,
K.
,
2019
, “
Multicriteria abc Inventory Classification Using Acceptability Analysis
,”
Int. Trans. Oper. Res.
,
26
(
6
), pp.
2494
2507
. 10.1111/itor.12412
10.
Lei
,
Y.
,
Yang
,
B.
,
Jiang
,
X.
,
Jia
,
F.
,
Li
,
N.
, and
Nandi
,
A. K.
,
2020
, “
Applications of Machine Learning to Machine Fault Diagnosis: A Review and Roadmap
,”
Mech. Syst. Sig. Process.
,
138
, p.
106587
. 10.1016/j.ymssp.2019.106587
11.
Wang
,
F.
,
Liu
,
C.
,
Su
,
W.
,
Xue
,
Z.
,
Li
,
H.
, and
Han
,
Q.
,
2017
, “
Condition Monitoring and Fault Diagnosis Methods for Low-Speed and Heavy-Load Slewing Bearings: A Literature Review
,”
J. Vibroeng.
,
19
(
5
), pp.
3429
3444
. 10.21595/jve.2017.18422
12.
Sanchez
,
R.-V.
,
Lucero
,
P.
,
Vasquez
,
R. E.
,
Cerrada
,
M.
,
Macancela
,
J.-C.
, and
Cabrera
,
D.
,
2018
, “
Feature Ranking for Multi-Fault Diagnosis of Rotating Machinery by Using Random Forest and knn
,”
J. Intell. Fuzzy Syst.
,
34
(
6
), pp.
3463
3473
. 10.3233/JIFS-169526
13.
Elforjani
,
M.
, and
Shanbr
,
S.
,
2017
, “
Prognosis of Bearing Acoustic Emission Signals Using Supervised Machine Learning
,”
IEEE Trans. Ind. Electron.
,
65
(
7
), pp.
5864
5871
. 10.1109/TIE.2017.2767551
14.
Le
,
V. T.
,
Lim
,
C. P.
,
Mohamed
,
S.
,
Nahavandi
,
S.
,
Yen
,
L.
,
Gallasch
,
G. E.
,
Baker
,
S.
,
Ludovici
,
D.
,
Draper
,
N.
, and
Wickramanayake
,
V.
,
2017
, “
Condition Monitoring of Engine Lubrication Oil of Military Vehicles: A Machine Learning Approach
,”
17th Australian International Aerospace Congress: AIAC 2017, Engineers Australia
,
Royal Aeronautical Society
, p.
718
.
15.
Niemczewska-Wójcik
,
M.
,
2017
, “
Wear Mechanisms and Surface Topography of Artificial hip Joint Components at the Subsequent Stages of Tribological Tests
,”
Measurement
,
107
, pp.
89
98
. 10.1016/j.measurement.2017.04.045
16.
Wang
,
S.
,
Wu
,
T.
,
Wu
,
H.
, and
Kwok
,
N.
,
2017
, “
Modeling Wear State Evolution Using Real-Time Wear Debris Features
,”
Tribol. Trans.
,
60
(
6
), pp.
1022
1032
. 10.1080/10402004.2016.1243746
17.
Wang
,
S.
,
Wu
,
T.
,
Shao
,
T.
, and
Peng
,
Z.
,
2019
, “
Integrated Model of bp Neural Network and cnn Algorithm for Automatic Wear Debris Classification
,”
Wear
,
426
, pp.
1761
1770
. 10.1016/j.wear.2018.12.087
18.
Gonzalez-Arias
,
C.
,
Viafara
,
C.
,
Coronado
,
J. J.
, and
Martinez
,
F.
,
2019
, “
Automatic Classification of Severe and Mild Wear in Worn Surface Images Using Histograms of Oriented Gradients as Descriptor
,”
Wear
,
426
, pp.
1702
1711
. 10.1016/j.wear.2018.11.028
19.
Breiman
,
L.
,
2001
, “
Random Forests
,”
Mach. Learn.
,
45
(
1
), pp.
5
32
. 10.1023/A:1010933404324
20.
Ho
,
T. K.
,
1998
, “
The Random Subspace Method for Constructing Decision Forests
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
20
(
8
), pp.
832
844
. 10.1109/34.709601
21.
Buitinck
,
L.
,
Louppe
,
G.
,
Blondel
,
M.
,
Pedregosa
,
F.
,
Mueller
,
A.
,
Grisel
,
O.
,
Niculae
,
V.
,
Prettenhofer
,
P.
,
Gramfort
,
A.
,
Grobler
,
J.
,
Layton
,
R.
,
VanderPlas
,
J.
,
Joly
,
A.
,
Holt
,
B.
, and
Varoquaux
,
G.
,
2013
, “
API Design for Machine Learning Software: Experiences From the Scikit-Learn Project
,”
ECML PKDD Workshop: Languages for Data Mining and Machine Learning
, pp.
108
122
.
22.
Breiman
,
L.
,
Friedman
,
J.
,
Stone
,
C. J.
, and
Olshen
,
R. A.
,
1984
,
Classification and Regression Trees
,
CRC Press
,
New York
.
23.
Cortes
,
C.
, and
Vapnik
,
V.
,
1995
, “
Support-Vector Networks
,”
Mach. Learn.
,
20
(
3
), pp.
273
297
.
24.
Hsu
,
C.-W.
, and
Lin
,
C.-J.
,
2002
, “
A Comparison of Methods for Multiclass Support Vector Machines
,”
IEEE Trans. Neural Networks
,
13
(
2
), pp.
415
425
. 10.1109/72.991427
25.
Duan
,
K.-B.
, and
Keerthi
,
S. S.
,
2005
, “Which is the Best Multiclass SVM Method? An Empirical Study,”
Multiple Classifier Systems
,
N. C.
Oza
,
R.
Polikar
,
J.
Kittler
, and
F.
Roli
, eds., Lecture Notes in Computer Science, vol, 3541,
Springer
,
Berlin/Heidelberg
, pp.
278
285
.
26.
Rifkin
,
R.
, and
Klautau
,
A.
,
2004
, “
In Defense of One-vs-All Classification
,”
J. Mach. Learn. Res.
,
5
, pp.
101
141
.
27.
Stehman
,
S. V.
,
1997
, “
Selecting and Interpreting Measures of Thematic Classification Accuracy
,”
Remote Sens. Environ.
,
62
(
1
), pp.
77
89
. 10.1016/S0034-4257(97)00083-7
28.
Pedregosa
,
F.
,
Varoquaux
,
G.
,
Gramfort
,
A.
,
Michel
,
V.
,
Thirion
,
B.
,
Grisel
,
O.
,
Blondel
,
M.
,
Prettenhofer
,
P.
,
Weiss
,
R.
,
Dubourg
,
V.
, et al
,
2011
, “
Scikit-learn: Machine Learning in Python
,”
J. Mach. Learn. Res.
,
12
, pp.
2825
2830
.
29.
Metz
,
C. E.
,
1978
, “
Basic Principles of ROC Analysis
,”
Semin. Nucl. Med.
,
8
(
4
), pp.
283
298
, WB Saunders.
30.
Powers
,
D. M.
,
2011
, “
Evaluation: From Precision, Recall and f-Measure to ROC, Informedness, Markedness and Correlation
,”
Int. J. Mach. Learn. Tech.
2
(
1
), pp.
37
63
.
31.
Atkinson
,
K.
,
1989
,
An Introduction to Numerical Analysis
, 2nd ed.,
John Wiley & Sons
,
New York
.
32.
Matthews
,
B. W.
,
1975
, “
Comparison of the Predicted and Observed Secondary Structure of t4 Phage Lysozyme
,”
Biochim. Biophys. Acta
,
405
(
2
), pp.
442
451
. 10.1016/0005-2795(75)90109-9
33.
Chicco
,
D.
,
2017
, “
Ten Quick Tips for Machine Learning in Computational Biology
,”
BioData Min.
,
10
(
1
), p.
35
. 10.1186/s13040-017-0155-3
34.
Chicco
,
D.
, and
Jurman
,
G.
,
2020
, “
The Advantages of the Matthews Correlation Coefficient (mcc) Over f1 Score and Accuracy in Binary Classification Evaluation
,”
BMC Genomics
,
21
(
1
), p.
6
. 10.1186/s12864-019-6413-7
35.
Gorodkin
,
J.
,
2004
, “
Comparing two k-Category Assignments by a k-Category Correlation Coefficient
,”
Comput. Biol. Chem.
,
28
(
5–6
), pp.
367
374
. 10.1016/j.compbiolchem.2004.09.006
36.
Kohavi
,
R.
,
1995
, “
A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection
,” In
IJCAI
,
Montreal, Canada
, Vol.
14
, pp.
1137
1145
.
37.
ASTM D445-19a
,
2019
,
Standard Test Method for Kinematic Viscosity of Transparent and Opaque Liquids (and Calculation of Dynamic Viscosity)
,
ASTM International
,
West Conshohocken, PA
,
www.astm.org
. http://dx.doi.org/10.1520/D0445-19A
38.
ASTM D664-18e2
,
2018
,
Standard Test Method for Acid Number of Petroleum Products by Potentiometric Titration
,
ASTM International
,
West Conshohocken, PA
,
www.astm.org
. http://dx.doi.org/10.1520/D0664-18E02
39.
ASTM D5185-18
,
2018
,
Standard Test Method for Multielement Determination of Used and Unused Lubricating Oils and Base Oils by Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES)
,
ASTM International
,
West Conshohocken, PA
,
www.astm.org
. http://dx.doi.org/10.1520/D5185-18
40.
ASTM D8120-17
,
2017
,
Standard Test Method for Ferrous Debris Quantification
,
ASTM International
,
West Conshohocken, PA
,
www.astm.org
. http://dx.doi.org/10.1520/D8120-17
41.
ASTM D7690-11
,
2017
,
Standard Practice for Microscopic Characterization of Particles from In-Service Lubricants by Analytical Ferrography
,
ASTM International
,
West Conshohocken, PA
,
www.astm.org
. http://dx.doi.org/10.1520/D7690-11R17
42.
Coronado
,
D.
, and
Kupferschmidt
,
C.
,
2014
, “
Assessment and Validation of oil Sensor Systems for On-Line Oil Condition Monitoring of Wind Turbine Gearboxes
,”
Procedia Technol.
,
15
, pp.
747
754
. 10.1016/j.protcy.2014.09.047
43.
Zhu
,
X.
,
Du
,
L.
, and
Zhe
,
J.
,
2017
, “
A 3 × 3 Wear Debris Sensor Array for Real Time Lubricant Oil Conditioning Monitoring Using Synchronized Sampling
,”
Mech. Syst. Signal Process.
,
83
, pp.
296
304
. 10.1016/j.ymssp.2016.06.014
44.
Cao
,
W.
,
Dong
,
G.
,
Xie
,
Y. B.
, and
Peng
,
Z.
,
2018
, “
Prediction of Wear Trend of Engines via Online Wear Debris Monitoring
,”
Tribol. Int.
,
120
, pp.
510
519
. https://doi.org/10.1016/j.triboint.2018.01.015
You do not currently have access to this content.