Abstract

Water-lubricated hydrodynamic spiral groove bearing is a potential support way for high-speed rotary machine, but the frictional power loss of the bearing will increase with the rotatory speed. Surface texture processing should be an effective technical means to decrease the friction power loss, and other static characteristics of the bearing will be affected by the such textural surface. However, the static characteristics of water-lubricated textured spiral groove thrust bearing have not been thoroughly considered. This article aims to establish the theoretical model for the water-lubricated textured spiral groove thrust bearing under laminar cavitating flow, and field distribution and static characteristics of the bearing are analyzed using the model. A verified test indicates that the theoretical simulation agrees with the experimental value. The result shows that, with consideration of texture effect, the friction torque of the bearing is reduced, there exists an optimal texture parameter for a given film thickness, under which the bearing has the maximum load-carrying capacity, no obvious change rule is found for the volume flowrate; with consideration of the cavitation effect, the load-carrying capacity of the bearing is increased, while the volume flow and the friction torque are slightly affected. The model developed in this study lays a solid foundation for the design of the water-lubricated textured spiral groove bearing.

References

1.
Yoshimoto
,
S.
,
Oshima
,
S.
,
Danbara
,
S.
, and
Shitara
,
T.
,
2002
, “
Stability of Water-Lubricated, Hydrostatic, Conical Bearings With Spiral Grooves for High-Speed Spindles
,”
ASME J. Tribol.
,
124
(
2
), pp.
398
405
.
2.
Murata
,
S.
,
Miyak
,
Y.
, and
Kawabata
,
N.
,
1979
, “
Exact Two-Dimensional Analysis of Circular Disk Spiral Groove Bearing
,”
ASME J. Lubr. Technol.
,
101
(
4
), pp.
424
430
.
3.
Gropper
,
D.
,
Wang
,
L.
, and
Harvey
,
T. J.
,
2016
, “
Hydrodynamic Lubrication of Textured Surfaces: A Review of Modeling Techniques and Key Findings
,”
Tribol. Int.
,
94
(
2
), pp.
509
529
.
4.
Ibatan
,
T.
,
Uddin
,
M.
, and
Chowdhury
,
M.
,
2015
, “
Recent Development on Surface Texturing in Enhancing Tribological Performance of Bearing Sliders
,”
Surf. Coat. Technol.
,
272
(
12
), pp.
102
120
.
5.
Shi
,
L. P.
,
Wang
,
X. Y.
,
Su
,
X.
,
Huang
,
W.
, and
Wang
,
X. L.
,
2016
, “
Comparison of the Load-Carrying Performance of Mechanical Gas Seals Textured With Microgrooves and Microdimples
,”
ASME J. Tribol.
,
138
(
2
), p.
021701
.
6.
Shen
,
Z.
,
Wang
,
F.
,
Chen
,
Z.
,
Ruan
,
X.
,
Zeng
,
H.
,
Wang
,
J.
,
An
,
Y.
, and
Fan
,
X.
,
2021
, “
Numerical Simulation of Lubrication Performance on Chevron Textured Surface Under Hydrodynamic Lubrication
,”
Tribol. Int.
,
154
(
2
), p.
106704
.
7.
Ma
,
C. B.
,
Duan
,
Y. J.
,
Yu
,
B.
,
Sun
,
J. J.
, and
Tu
,
Q.
,
2017
, “
The Comprehensive Effect of Surface Texture and Roughness Under Hydrodynamic and Mixed Lubrication Conditions
,”
Proc. Inst. Mech. Eng., Part J
,
231
(
10
), pp.
1307
1319
.
8.
Ji
,
J. H.
,
Dong
,
B. D.
,
Fu
,
H.
,
Wang
,
W.
, and
Zhang
,
Y. H.
,
2019
, “
Hydrodynamic Lubrication of Textured Infinitely Long Slider With Cross-Hatched Texture
,”
Meccanica
,
54
(
14
), pp.
2067
2079
.
9.
He
,
X.
,
Liao
,
W. L.
,
Wang
,
G. R.
, and
Li
,
M. Y.
,
2018
, “
Impact Evaluation Approach of a Texture Cross Section Shape on Hydrodynamic Lubrication Performance
,”
Mechanisms and Machine Science, International Conference on Mechanical Design
,
55
, pp.
1593
1611
.
10.
Uddin
,
M. S.
,
Ibatan
,
T.
, and
Shankar
,
S.
,
2016
, “
Influence of Surface Texture Shape, Geometry and Orientation on Hydrodynamic Lubrication Performance of Plane-to-Plane Slider Surfaces
,”
Lubr. Sci.
,
29
(
3
), pp.
153
181
.
11.
Wang
,
J. H.
,
Yan
,
Z. J.
,
Fang
,
X.
,
Shen
,
Z. Y.
, and
Pan
,
X. X.
,
2020
, “
Observation and Experimental Investigation on Cavitation Effect of Friction Pair Surface Texture
,”
Lubr. Sci.
,
32
(
8
), pp.
404
414
.
12.
Liu
,
W. L.
,
Ni
,
H. J.
,
Chen
,
H. L.
, and
Wang
,
P.
,
2019
, “
Numerical Simulation and Experimental Investigation on Tribological Performance of Micro-Dimples Textured Surface Under Hydrodynamic Lubrication
,”
Int. J. Mech. Sci.
,
163
(
11
), p.
105095
.
13.
Ismail
,
S.
, and
Sarangi
,
M.
,
2018
, “
Effects of Texture Shape and Fluid–Solid Interfacial Slip on the Hydrodynamic Lubrication Performance of Parallel Sliding Contacts
,”
J. Braz. Soc. Mech. Sci. Eng.
,
40
(
6
), p.
314
.
14.
Su
,
B.
,
Huang
,
L.
,
Huang
,
W.
, and
Wang
,
X.
,
2017
, “
The Load Carrying Capacity of Textured Sliding Bearings With Elastic Deformation
,”
Tribol. Int.
,
109
(
5
), pp.
86
96
.
15.
Huang
,
F. Y.
,
Yang
,
X. B.
,
Zhu
,
J. W.
, and
Xu
,
J. L.
,
2020
, “
Effect of Surface Texture Distribution Parameters on Hydrodynamic Lubrication and Numerical Optimization
,”
J. Phys.: Conf. Ser.
,
1600
(
1
), p.
012018
.
16.
Susilowati
,
Tauviqirrahman
,
M.
,
Jamari
,
J.
, and
Bayuseno
,
A. P.
,
2018
, “
Effect of Texture Shape on the Hydrodynamic Lubrication Performance of the Sliding Textured Contact: A Numerical Approach
,”
J. Phys.: Conf. Ser.
,
1090
(
1
), p.
012027
.
17.
Yu
,
H. W.
,
Wang
,
X. L.
, and
Zhou
,
F.
,
2010
, “
Geometric Shape Effects of Surface Texture on the Generation of Hydrodynamic Pressure Between Conformal Contacting Surfaces
,”
Tribol. Lett.
,
37
(
2
), pp.
123
130
.
18.
Wang
,
Y. J.
,
Li
,
Q.
,
Zhang
,
S.
,
Tang
,
X. H.
,
Xu
,
W. W.
, and
Wang
,
Z. B.
,
2020
, “
Analysis of Turbulence and Blocking Effects on Loading Capacity for Elementary Texture Cells of Infinite Width Under Water Lubrication
,”
Ind. Lubr. Tribol.
,
73
(
1
), pp.
103
112
.
19.
Bai
,
L.
,
Meng
,
Y.
, and
Zhang
,
V.
,
2016
, “
Experimental Study on Transient Behavior of Cavitation Phenomenon in Textured Thrust Bearings
,”
Tribol. Lett.
,
63
(
2
), p.
27
.
20.
Shen
,
C.
, and
Khonsari
,
M. M.
,
2013
, “
On the Magnitude of Cavitation Pressure of Steady-State Lubrication
,”
Tribol. Lett.
,
51
(
1
), pp.
153
160
.
21.
Cross
,
A. T.
,
Sadeghi
,
F.
,
Cao
,
L. J.
,
Rateick
,
R. G.
, and
Rowan
,
S.
,
2012
, “
Flow Visualization in a Pocketed Thrust Washer
,”
Tribol. Trans.
,
55
(
5
), pp.
571
581
.
22.
Qiu
,
Y.
, and
Khonsari
,
M. M.
,
2011
, “
Experimental Investigation of Tribological Performance of Laser Textured Stainless Steel Rings
,”
Tribol. Int.
,
44
(
5
), pp.
635
644
.
23.
Qiu
,
Y.
, and
Khonsari
,
M. M.
,
2009
, “
On the Prediction of Cavitation in Dimples Using a Mass-Conservative Algorithm
,”
ASME J. Tribol.
,
131
(
4
), p.
041702
.
24.
Wang
,
X. L.
,
Kato
,
K.
,
Adachi
,
K.
, and
Aizawa
,
K.
,
2003
, “
Loads Carrying Capacity Map for the Surface Texture Design of SiC Thrust Bearing Sliding in Water
,”
Tribol. Int.
,
36
(
3
), pp.
189
197
.
25.
Gropper
,
D.
,
Harvey
,
T. J.
, and
Wang
,
L.
,
2018
, “
Numerical Analysis, and Optimization of Surface Textures for a Tilting Pad Thrust Bearing
,”
Tribol. Int.
,
124
(
8
), pp.
134
144
.
26.
Zhang
,
J.
, and
Meng
,
Y.
,
2012
, “
Direct Observation of Cavitation Phenomenon and Hydrodynamic Lubrication Analysis of Textured Surfaces
,”
Tribol. Lett.
,
46
(
2
), pp.
147
158
.
27.
Meng
,
F. M.
,
Zhang
,
L.
, and
Long
,
T.
,
2017
, “
Effect of Groove Textures on Performances for Gaseous Bubble in Lubricant of Journal Bearing
,”
ASME J. Tribol.
,
139
(
3
), p.
031701
.
28.
Meng
,
F. M.
,
Zhang
,
L.
, and
Long
,
T.
,
2017
, “
Operation Parameters’ Effect on Gaseous Bubbles in Lubricant of Groove Textured Journal Bearing
,”
ASME J. Tribol.
,
139
(
5
), p.
051707
.
29.
Lin
,
X. H.
,
Wang
,
R. Q.
,
Zhang
,
S. W.
,
Zhang
,
C. B.
, and
Jiang
,
S. Y.
,
2019
, “
Study of Cavitation Bubbles Evolution for High-Speed Water-Lubricated Spiral Groove Thrust Bearings
,”
ASME J. Tribol.
,
141
(
5
), p.
051703
.
30.
Wijngaarden
,
L. V.
,
1967
, “
On the Growth of Small Cavitation Bubbles by Convective Diffusion
,”
Int. J. Heat Mass Transfer
,
10
(
2
), pp.
127
134
.
You do not currently have access to this content.