Abstract

With the rapid development in additive manufacturing technology, three-dimensional (3D) printing process has been extensively utilized for the prototype manufacturing of industrial components. It is becoming possible and fascinating to directly fabricate surface textures for tribological applications by 3D printing. In this study, a series of polylactic acid (PLA) components with spiral-groove surface textures for the application prospect in the field of mechanical seals were fabricated on a commercially available fused deposition modeling (FDM) 3D printer. The frictional behaviors of the printed components under oil lubrication were investigated on an end-face tribometer. The influence of spiral groove number, groove depth, and printing orientation on friction coefficients was discussed. The test results indicate that the frictional performance of linear-printed component with small groove depth is much better than that of homocentric-printed ones with large groove depth. The minimum average friction coefficient of linear-printed component is about 0.07 while the value is about 0.085 for the homocentric-printed ones. In final, a theoretical simulation based on the Reynolds lubricating regime was conducted to clarify the underlying mechanism of the experimental results, and the numerical results show that the hydrodynamic effect of the linear-printed components is more obvious due to the interaction between the linear printing clearances and the rotation of the counterpart.

References

1.
Luo
,
J. B.
,
2020
, “
Investigation on the Origin of Friction and Superlubricity (in Chinese)
,”
Chin. Sci. Bull.
,
65
(
27
), pp.
2966
2978
.
2.
Kumar
,
A.
,
2021
, “
Advancements in Emerging Superlubricity: A Review of the Atomistic Models, Simulation Techniques and Their Applications to Explore the State of Ultra-Low Friction
,”
Mater. Today: Proc.
,
42
, pp.
884
892
.
3.
Zhang
,
G. L.
,
Wang
,
Y. C.
,
Liu
,
Y.
,
Liu
,
X. F.
, and
Wang
,
Y. M.
,
2019
, “
Significant Friction Reduction of High-Intensity Pulsed Ion Beam Irradiated WC-Ni Against Graphite Under Water Lubrication
,”
Friction
,
7
(
3
), pp.
217
226
.
4.
Zhang
,
G. L.
,
Liu
,
Y.
,
Guo
,
F.
,
Liu
,
X. F.
, and
Wang
,
Y. M.
,
2017
, “
Friction Characteristics of Impregnated and Non-Impregnated Graphite Against Cemented Carbide Under Water Lubrication
,”
J. Mater. Sci. Technol.
,
33
(
10
), pp.
1203
1209
.
5.
Mao
,
B.
,
Siddaiah
,
A.
,
Liao
,
Y. L.
, and
Menezes
,
P. L.
,
2020
, “
Laser Surface Texturing and Related Techniques for Enhancing Tribological Performance of Engineering Materials: A Review
,”
J. Manuf. Process.
,
53
, pp.
153
173
.
6.
Xie
,
Z. L.
,
Wang
,
X. R.
, and
Zhu
,
W. D.
,
2022
, “
Theoretical and Experimental Exploration Into the Fluid Structure Coupling Dynamic Behaviors Towards Water-Lubricated Bearing With Axial Asymmetric Grooves
,”
Mech. Syst. Signal Pr.
,
168
, p.
108624
.
7.
Lu
,
P.
, and
Wood
,
R. J. K.
,
2020
, “
Tribological Performance of Surface Texturing in Mechanical Application- A Review
,”
Surf. Topogr.- Metrol.
,
8
(
4
), p.
043001
.
8.
Hamilton
,
D. B.
,
Walowit
,
J. A.
, and
Allen
,
C. M.
,
1966
, “
A Theory of Lubrication by Micro-Irregularities
,”
ASME J. Basic Eng.
,
88
(
1
), pp.
177
185
.
9.
Ibatan
,
T.
,
Uddin
,
M. S.
, and
Chowdhury
,
M. A. K.
,
2015
, “
Recent Development on Surface Texturing in Enhancing Tribological Performance
,”
Surf. Coat. Tech.
,
272
, pp.
102
120
.
10.
Wakuda
,
M.
,
Yamauchi
,
Y.
,
Kanzaki
,
S.
, and
Yasuda
,
Y.
,
2003
, “
Effect of Surface Texturing on Friction Reduction Between Ceramic and Steel Materials Under Lubricated Sliding Contact
,”
Wear
,
254
(
3–4
), pp.
356
363
.
11.
Zhang
,
H.
,
Liu
,
Y.
,
Hafezi
,
M.
,
Hua
,
M.
, and
Dong
,
G. N.
,
2020
, “
A Distribution Design for Circular Concave Textures on Sectorial Thrust Bearing Pads
,”
Tribol. Int.
,
149
, p.
105733
.
12.
Zhang
,
H.
,
Hua
,
M.
,
Dong
,
G. N.
,
Zhang
,
D. Y.
, and
Chin
,
K. S.
,
2016
, “
A Mixed Lubrication Model for Studying Tribological Behaviors of Surface Texturing
,”
Tribol. Int.
,
93
, pp.
583
592
.
13.
Lu
,
P.
,
Wood
,
R. J. K.
,
Gee
,
M. G.
,
Wang
,
L.
, and
Pfleging
,
W.
,
2018
, “
A Novel Surface Texture Shape for Directional Friction Control
,”
Tribol. Lett.
,
66
(
1
), p.
51
.
14.
Varenberg
,
M.
,
Halperin
,
G.
, and
Etsion
,
I.
,
2002
, “
Different Aspects of the Role of Wear Debris in Fretting Wear
,”
Wear
,
252
(
11–12
), pp.
902
910
.
15.
Chen
,
P.
,
Xiang
,
X.
,
Shao
,
T. M.
,
La
,
Y. Q.
, and
Li
,
J. L.
,
2016
, “
Effect of Triangular Texture on the Tribological Performance of Die Steel With TiN Coatings Under Lubricated Sliding Condition
,”
Appl. Surf. Sci.
,
389
, pp.
361
368
.
16.
Zhou
,
Y. K.
,
Zhu
,
H.
,
Tang
,
W.
,
Ma
,
C. B.
, and
Zhang
,
W. Q.
,
2012
, “
Development of the Theoretical Model for the Optimal Design of Surface Texturing on Cylinder Liner
,”
Tribol. Int.
,
52
, pp.
1
6
.
17.
Marian
,
M.
,
Almqvist
,
A.
,
Rosenkranz
,
A.
, and
Fillon
,
M.
,
2022
, “
Numerical Micro-Texture Optimization for Lubricated Contacts- A Critical Discussion
,”
Friction.
18.
Etsion
,
I.
, and
Halperin
,
G.
,
2008
, “
A Laser Surface Textured Hydrostatic Mechanical Seal
,”
Tribol. T.
,
45
(
3
), pp.
430
434
.
19.
Pan
,
C. F.
,
Chen
,
K. Y.
,
Liu
,
B.
,
Ren
,
L.
,
Wang
,
J. R.
,
Hu
,
Q. K.
,
Liang
,
L.
,
Zhou
,
J. H.
, and
Jiang
,
L. L.
,
2017
, “
Fabrication of Micro-Texture Channel on Glass by Laser-Induced Plasma-Assisted and Chemical Corrosion for Microfluidic Devices
,”
J. Mater. Process. Tech.
,
240
, pp.
314
323
.
20.
Yuan
,
Y. J.
,
Zhang
,
D. W.
,
Jing
,
X. B.
,
Cao
,
J.
, and
Ehmann
,
K. F.
,
2019
, “
Micro Texture Fabrication by a Non-Resonant Vibration Generator
,”
J. Manuf. Process.
,
45
, pp.
732
745
.
21.
Wang
,
X. J.
,
Liu
,
J. Y.
,
Wang
,
Y.
, and
Fu
,
Y. N.
,
2017
, “
Fabrication of Friction-Reducing Texture Surface by Selective Laser Melting of Ink-Printed (SLM-IP) Copper (Cu) Nanoparticles (NPs)
,”
Appl. Surf. Sci.
,
396
, pp.
659
664
.
22.
Meng
,
R.
,
Deng
,
J. X.
,
Liu
,
Y. Y.
,
Duan
,
R.
, and
Zhang
,
G. L.
,
2018
, “
Improving Tribological Performance of Cemented Carbides by Combining Laser Surface Texturing and W-S-C Solid Lubricant Coating
,”
Int. J. Refract. Met. H.
,
72
, pp.
163
171
.
23.
Mitov
,
Z.
, and
Kumacheva
,
E.
,
1998
, “
Convection-Induced Patterns in Phase-Separating Polymeric Fluids
,”
Phys. Rev. Lett.
,
81
(
16
), pp.
3427
3430
.
24.
Ali
,
M. H.
,
Batai
,
S.
, and
Sarbassov
,
D.
,
2019
, “
3D Printing: A Critical Review of Current Development and Future Prospects
,”
Rapid Prototyp. J.
,
25
(
6
), pp.
1108
1126
.
25.
Yuan
,
W. F.
,
Yao
,
Y.
,
Keer
,
L.
,
Jiao
,
Y. W.
,
Yu
,
J. X.
,
Li
,
Q. Y.
, and
Feng
,
X. Q.
,
2019
, “
3D-Printed Biomimetic Surface Structures With Abnormal Friction Properties
,”
Extreme Mech. Lett.
,
26
, pp.
46
52
.
26.
Lee
,
Y. J.
,
Lee
,
K. H.
, and
Lee
,
C. H.
,
2018
, “
Self-Lubricating and Friction Performance of a Three-Dimensional-Printed Journal Bearings
,”
ASME J. Tribol.
,
140
(
5
), p.
054501
.
27.
Lee
,
K. M.
,
Park
,
H.
,
Kim
,
J. H.
, and
Chun
,
D. M.
,
2019
, “
Fabrication of a Superhydrophobic Surface Using a Fused Deposition Modeling (FDM) 3D Printer With Poly Lactic Acid (PLA) Filament and Dip Coating With Silica Nanoparticles
,”
Appl. Surf. Sci.
,
467–468
, pp.
979
991
.
28.
Guo
,
Y. G.
,
Luo
,
B. P.
,
Wang
,
X. C.
,
Liu
,
S. H.
, and
Geng
,
T.
,
2021
, “
Wettability Control and Oil/Water Separation Performance of 3D-Printed Porous Materials
,”
Appl. Polym.
,
139
(
5
), p.
51570
.
29.
Hanon
,
M. M.
,
Kovács
,
M.
, and
Zsidai
,
L.
,
2019
, “
Tribology Behaviour Investigation of 3D Printed Polymers
,”
Int. Rev. Appl. Sci. Eng.
,
10
(
2
), pp.
173
181
.
30.
Roy
,
R.
, and
Mukhopadhyay
,
A.
,
2021
, “
Tribological Studies of 3D Printed ABS and PLA Plastic Parts
,”
Mater. Today: Proc.
,
41
, pp.
856
862
.
31.
Hanon
,
M. M.
, and
Zsidai
,
L.
,
2021
, “
Comprehending the Role of Process Parameters and Filament Color on the Structure and Tribological Performance of 3D Printed PLA
,”
J. Mater. Res. Technol.
,
15
, pp.
647
660
.
32.
Chisu
,
G.
,
Stoica
,
N. A.
, and
Stoica
,
A. M.
,
2021
, “
Friction Behavior of 3D-Printed Polymeric Materials Used in Sliding Systems
,”
Mater. Plast.
,
58
(
1
), pp.
176
185
.
33.
Zhang
,
P.
,
Hu
,
Z. C.
,
Xie
,
H. X.
,
Lee
,
G. H.
, and
Lee
,
C. H.
,
2020
, “
Friction and Wear Characteristics of Polylactic Acid (PLA) for 3D Printing Under Reciprocating Sliding Condition
,”
Ind. Lubr. Tribol.
,
72
(
4
), pp.
533
539
.
34.
Hong
,
Y.
,
Zhang
,
P.
,
Lee
,
K. H.
, and
Lee
,
C. H.
,
2017
, “
Friction and Wear of Textured Surfaces Produced by 3D Printing
,”
Sci. China
,
60
(
9
), pp.
1400
1406
.
35.
Aziz
,
R.
,
Haq
,
M. I. U.
, and
Raina
,
A.
,
2020
, “
Effect of Surface Texturing on Friction Behaviour of 3D Printed Polylactic Acid (PLA)
,”
Polym. Test.
,
85
, p.
106434
.
36.
Amiruddin
,
H.
,
Abdollah
,
M. F. B.
, and
Norashid
,
N. A.
,
2019
, “
Comparative Study of the Tribological Behaviour of 3D-Printed and Moulded ABS Under Lubricated Condition
,”
Mater. Res. Express
,
6
(
8
), p.
085328
.
37.
Xu
,
L. S.
,
Wu
,
J. H.
,
Wang
,
Y. L.
,
Rafique
,
F.
,
Xu
,
J. M.
, and
Yuan
,
X. Y.
,
2022
, “
Application and Performance Enhancement by Attaching Superconducting Magnetic Force on Mechanical Seals for Reusable Rocket Turbopump
,”
P. I. Mech. Eng. J- J. Eng.
,
236
(
5
), pp.
892
907
.
38.
Zhou
,
J. F.
,
Fan
,
H. L.
, and
Shao
,
C. L.
,
2016
, “
Experimental Study on the Hydrodynamic Lubrication Characteristics of Magnetofluid Film in a Spiral Groove Mechanical Seal
,”
Tribol. Int.
,
95
, pp.
192
198
.
39.
Hu
,
Z. W.
,
Liu
,
K.
,
Liu
,
X. J.
, and
Wang
,
W.
,
2016
, “
Effect of Surface Texture on Asperity Flattening at Plastic Deformed Interface in Static Contact State (in Chinese)
,”
J. Mech. Eng.
,
52
(
3
), pp.
93
100
.
40.
Gropper
,
D.
,
Wang
,
L.
, and
Harvey
,
T. J.
,
2016
, “
Hydrodynamic Lubrication of Textured Surface: A Review of Modeling Techniques and Key Findings
,”
Tribol. Int.
,
94
, pp.
509
529
.
41.
Qiu
,
Y.
, and
Khonsari
,
M. M.
,
2009
, “
On the Predication of Cavitation in Dimple Using a Mass-Conservative Algorithm
,”
ASME J. Tribol.
,
131
(
4
), p.
041702
.
42.
Etsion
,
I.
,
Kligerman
,
Y.
, and
Halperin
,
G.
,
1999
, “
Analytical and Experimental Investigations of Laser-Textured Mechanical Seal Faces
,”
Tribol. T.
,
42
(
3
), pp.
511
516
.
43.
Minet
,
C.
,
Brunetière
,
N.
, and
Tournerie
,
B.
,
2011
, “
A Deterministic Mixed Lubrication Model for Mechanical Seals
,”
ASME J. Tribol.
,
133
(
4
), p.
042203
.
You do not currently have access to this content.