Abstract

Materials wear is often characterized by empirical relations as the physical and chemical interactions at sliding interfaces are not fully understood at any length scale. Recent studies showed that these wear relations do not always hold in particular at the nanoscale. Here we discuss the validity range and limitations of two well-known wear models, i.e., Archard’s and Reye’s ones (which were principally developed for adhesive wear) for an abrasive wear process. Using systematic long-timescale molecular dynamic nanoscratching simulations, we show that, at the nanoscale, the wear coefficient increases by the adhesion strength and scratching depth and eventually saturates to a constant value. The saturation is associated with the transition from atomic attrition wear mode to plasticity-induced wear. This new understanding rationalizes discrepant experimental observations on the validity of Archard’s wear relation at the nanoscale. Furthermore, it confirms that a depth- and adhesion-independent wear coefficient can be obtained when plastic deformation dictates the abrasive wear process.

References

1.
Kim
,
H.-J.
,
Yoo
,
S.-S.
, and
Kim
,
D.-E.
,
2012
, “
Nano-Scale Wear: A Review
,”
Int. J. Precis. Eng. Manuf.
,
13
(
9
), pp.
1709
1718
.
2.
Lim
,
S.
, and
Ashby
,
M.
,
1987
, “
Quantitative Wear Maps as a Visualization of Wear Mechanism Transitions in Ceramic Materials
,”
Acta Metall.
,
35
(
1
), pp.
1
24
.
3.
Vakis
,
A.
,
Yastrebov
,
V.
,
Scheibert
,
J.
,
Nicola
,
L.
,
Dini
,
D.
,
Minfray
,
C.
,
Almqvist
,
A.
, et al.,
2018
, “
Modeling and Simulation in Tribology Across Scales: An Overview
,”
Tribol. Int.
,
125
, pp.
169
199
.
4.
Badisch
,
E.
,
Varga
,
M.
, and
Eder
,
S. J.
,
2019
,
Key Engineering Materials
, Vol.
799
, pp.
83
88
.
5.
Sekhar
,
A. P.
, and
Das
,
D.
,
2022
, “
Two-Body Abrasive Wear Behavior and Its Correlation With Mechanical Properties of Aged AA6063 Alloy
,”
ASME J. Tribol.
,
144
(
7
), p.
071703
.
6.
Bhushan
,
B.
,
2000
,
Modern Tribology Handbook, Two Volume Set
,
CRC Press
,
Boca Raton, FL
.
7.
Szlufarska
,
I.
,
Chandross
,
M.
, and
Carpick
,
R. W.
,
2008
, “
Recent Advances in Single-Asperity Nanotribology
,”
J. Phys. D: Appl. Phys.
,
41
(
12
), p.
123001
.
8.
Müser
,
M. H.
,
Dapp
,
W. B.
,
Bugnicourt
,
R.
,
Sainsot
,
P.
,
Lesaffre
,
N.
,
Lubrecht
,
T. A.
,
Persson
,
B. N.
, et al.,
2017
, “
Meeting the Contact-Mechanics Challenge
,”
Tribol. Lett.
,
65
(
4
), pp.
1
18
.
9.
Celano
,
U.
,
Hsia
,
F.-C.
,
Vanhaeren
,
D.
,
Paredis
,
K.
,
Nordling
,
T. E.
,
Buijnsters
,
J. G.
,
Hantschel
,
T.
, and
Vandervorst
,
W.
,
2018
, “
Mesoscopic Physical Removal of Material Using Sliding Nano-Diamond Contacts
,”
Sci. Rep.
,
8
(
1
), pp.
1
10
.
10.
Walker
,
J.
,
Umer
,
J.
,
Mohammadpour
,
M.
,
Theodossiades
,
S.
,
Bewsher
,
S. R.
,
Offner
,
G.
,
Bansal
,
H.
,
Leighton
,
M.
,
Braunstingl
,
M.
, and
Flesch
,
H.-G.
,
2021
, “
Asperity Level Characterization of Abrasive Wear Using Atomic Force Microscopy
,”
Proc. R. Soc. A
,
477
(
2250
), p.
20210103
.
11.
Guo
,
J.
,
Tan
,
S.
, and
Xiao
,
C.
,
2022
, “
Atomistic Understanding of Scratching-Induced Material Attrition of Wurtzite Single-Crystal Aln Using Nanoscale Diamond Abrasive
,”
Tribol. Int.
,
169
, p.
107483
.
12.
Zhu
,
J.
,
Li
,
X.
,
Zhou
,
Q.
, and
Aghababaei
,
R.
,
2022
, “
On the Anisotropic Scratching Behavior of Single Crystalline Copper at Nanoscale
,”
Tribol. Int.
,
175
, p.
107794
.
13.
Archard
,
J. F.
,
1953
, “
Contact and Rubbing of Flat Surfaces
,”
J. Appl. Phys.
,
24
(
8
), pp.
981
988
.
14.
Gnecco
,
E.
,
Bennewitz
,
R.
, and
Meyer
,
E.
,
2002
, “
Abrasive Wear on the Atomic Scale
,”
Phys. Rev. Lett.
,
88
(
21
), p.
215501
.
15.
Bhaskaran
,
H.
,
Gotsmann
,
B.
,
Sebastian
,
A.
,
Drechsler
,
U.
,
Lantz
,
M. A.
,
Despont
,
M.
,
Jaroenapibal
,
P.
,
Carpick
,
R. W.
,
Chen
,
Y.
, and
Sridharan
,
K.
,
2010
, “
Ultralow Nanoscale Wear Through Atom-by-Atom Attrition in Silicon-Containing Diamond-Like Carbon
,”
Nat. Nanotechnol.
,
5
(
3
), pp.
181
185
.
16.
Reichelt
,
M.
, and
Cappella
,
B.
,
2022
, “
Wear Volume of Self-Mated Steel at the Submicron-Scale: An Atomic Force Microscopy Study
,”
ASME J. Tribol.
,
144
(
6
), p.
061702
.
17.
Zhao
,
K.
, and
Aghababaei
,
R.
,
2020
, “
Adhesive Wear Law at the Single Asperity Level
,”
J. Mech. Phys. Solids
,
143
, p.
104069
.
18.
Aghababaei
,
R.
, and
Zhao
,
K.
,
2021
, “
Micromechanics of Material Detachment During Adhesive Wear: A Numerical Assessment of Archard’s Wear Model
,”
Wear
,
476
, p.
203739
(23rd International Conference on Wear of Materials).
19.
Ma
,
L.
, and
Aghababaei
,
R.
,
2022
, “
On the Effect of Adhesive Strength and Scratching Depth on Material Transfer During Nanoscale Scratching
,”
Tribol. Lett.
,
70
(
1
), pp.
1
9
.
20.
Plimpton
,
S.
,
1995
, “
Fast Parallel Algorithms for Short-Range Molecular Dynamics
,”
J. Comput. Phys.
,
117
(
1
), pp.
1
19
.
21.
Stukowski
,
A.
,
2009
, “
Visualization and Analysis of Atomistic Simulation Data With OVITO—The Open Visualization Tool
,”
Modell. Simul. Mater. Sci. Eng.
,
18
(
1
), p.
015012
.
22.
Schneider
,
T.
, and
Stoll
,
E.
,
1978
, “
Molecular-Dynamics Study of a Three-Dimensional One-Component Model for Distortive Phase Transitions
,”
Phys. Rev. B
,
17
(
3
), pp.
1302
1322
.
23.
Girifalco
,
L. A.
, and
Weizer
,
V. G.
,
1959
, “
Application of the Morse Potential Function to Cubic Metals
,”
Phys. Rev.
,
114
(
3
), pp.
687
690
.
24.
Aghababaei
,
R.
,
Warner
,
D. H.
, and
Molinari
,
J.-F.
,
2016
, “
Critical Length Scale Controls Adhesive Wear Mechanisms
,”
Nat. Commun.
,
7
(
1
), pp.
1
8
.
25.
Zhao
,
K.
, and
Aghababaei
,
R.
,
2020
, “
Interfacial Plasticity Controls Material Removal Rate During Adhesive Sliding Contact
,”
Phys. Rev. Mater.
,
4
(
10
), p.
103605
.
26.
Karupannasamy
,
D. K.
,
Kailas
,
S. V.
,
Shankar
,
S.
, and
Sasikumar
,
K. S. K.
,
2022
, “
A Predictive Model for Galling Phenomenon and Its Applicability for Deep Drawing Processes
,”
ASME J. Tribol.
,
144
(
1
), p.
011705
.
27.
Daw
,
M. S.
, and
Baskes
,
M. I.
,
1984
, “
Embedded-Atom Method: Derivation and Application to Impurities, Surfaces, and Other Defects in Metals
,”
Phys. Rev. B
,
29
, pp.
6443
6453
.
28.
Falk
,
M.
, and
Langer
,
J.
,
1998
, “
Dynamics of Viscoplastic Deformation in Amorphous Solids
,”
Phys. Rev. E Stat. Phys. Plasmas Fluids Related Interdiscipl. Topics
,
57
(
6
), pp.
7192
7205
.
29.
Zhu
,
J.
,
Xiong
,
C.
,
Ma
,
L.
,
Zhou
,
Q.
,
Huang
,
Y.
,
Zhou
,
B.
, and
Wang
,
J.
,
2020
, “
Coupled Effect of Scratching Direction and Speed on Nano-Scratching Behavior of Single Crystalline Copper
,”
Tribol. Int.
,
150
, p.
106385
.
30.
Maculotti
,
G.
,
Goti
,
E.
,
Genta
,
G.
,
Mazza
,
L.
, and
Galetto
,
M.
,
2022
, “
Uncertainty-Based Comparison of Conventional and Surface Topography-Based Methods for Wear Volume Evaluation in Pin-on-Disc Tribological Test
,”
Tribol. Int.
,
165
, p.
107260
.
31.
Chowdhury
,
M.
,
Bose
,
B.
,
Yamamoto
,
K.
,
Shuster
,
L.
,
Paiva
,
J.
,
Fox-Rabinovich
,
G.
, and
Veldhuis
,
S.
,
2020
, “
Wear Performance Investigation of PVD Coated and Uncoated Carbide Tools During High-Speed Machining of TiAl6V4 Aerospace Alloy
,”
Wear
,
446–447
, p.
203168
.
32.
Archard
,
J.
,
1953
, “
Contact and Rubbing of Flat Surfaces
,”
J. Appl. Phys.
,
24
(
8
), pp.
981
988
.
33.
Rabinowicz
,
E.
, and
Tanner
,
R.
,
1966
, “
Friction and Wear of Materials
,”
J. Appl. Mech.
,
33
(
2
), p.
479
.
34.
Armstrong
,
D. E. J.
,
Edmondson
,
P. D.
, and
Roberts
,
S. G.
,
2013
, “
Effects of Sequential Tungsten and Helium Ion Implantation on Nano-Indentation Hardness of Tungsten
,”
Appl. Phys. Lett.
,
102
(
25
), p.
251901
.
35.
Goel
,
S.
,
Cross
,
G.
,
Stukowski
,
A.
,
Gamsjäger
,
E.
,
Beake
,
B.
, and
Agrawal
,
A.
,
2018
, “
Designing Nanoindentation Simulation Studies by Appropriate Indenter Choices: Case Study on Single Crystal Tungsten
,”
Comput. Mater. Sci.
,
152
, pp.
196
210
.
36.
Shim
,
S.
,
Bei
,
H.
,
George
,
E.
, and
Pharr
,
G.
,
2008
, “
A Different Type of Indentation Size Effect
,”
Scr. Mater.
,
59
(
10
), pp.
1095
1098
.
37.
Klecka
,
M. A.
,
Subhash
,
G.
, and
Arakere
,
N. K.
,
2011
, “
Determination of Subsurface Hardness Gradients in Plastically Graded Materials Via Surface Indentation
,”
ASME J. Tribol.
,
133
(
3
), p.
031403
.
38.
Aghababaei
,
R.
,
Warner
,
D. H.
, and
Molinari
,
J.-F.
,
2017
, “
On the Debris-Level Origins of Adhesive Wear
,”
Proc. Natl. Acad. Sci. U.S.A.
,
114
(
30
), pp.
7935
7940
.
39.
Agrawal
,
R.
,
Moldovan
,
N.
, and
Espinosa
,
H. D.
,
2009
, “
An Energy-Based Model to Predict Wear in Nanocrystalline Diamond Atomic Force Microscopy Tips
,”
J. Appl. Phys.
,
106
(
6
), p.
064311
.
40.
Aghababaei
,
R.
,
Brink
,
T.
, and
Molinari
,
J.-F. M. C.
,
2018
, “
Asperity-Level Origins of Transition From Mild to Severe Wear
,”
Phys. Rev. Lett.
,
120
, p.
186105
.
41.
Popov
,
V. L.
, and
Pohrt
,
R.
,
2018
, “
Adhesive Wear and Particle Emission: Numerical Approach Based on Asperity-Free Formulation of Rabinowicz Criterion
,”
Friction
,
6
(
3
), pp.
260
273
.
42.
Wang
,
Y.
,
Xu
,
J.
,
Ootani
,
Y.
,
Ozawa
,
N.
,
Adachi
,
K.
, and
Kubo
,
M.
,
2021
, “
Non-Empirical Law for Nanoscale Atom-by-Atom Wear
,”
Adv. Sci.
,
8
(
2
), p.
2002827
.
43.
Yang
,
Y.
, and
Shi
,
Y.
,
2018
, “
Single Asperity Friction in the Wear Regime
,”
Friction
,
6
(
3
), pp.
316
322
.
44.
Liu
,
J.
,
Jiang
,
Y.
,
Grierson
,
D. S.
,
Sridharan
,
K.
,
Shao
,
Y.
,
Jacobs
,
T. D.
,
Falk
,
M. L.
,
Carpick
,
R. W.
, and
Turner
,
K. T.
,
2017
, “
Tribochemical Wear of Diamond-Like Carbon-Coated Atomic Force Microscope Tips
,”
ACS Appl. Mater. Interfaces
,
9
(
40
), pp.
35341
35348
.
45.
Gotsmann
,
B.
, and
Lantz
,
M. A.
,
2008
, “
Atomistic Wear in a Single Asperity Sliding Contact
,”
Phys. Rev. Lett.
,
101
(
Sep
), p.
125501
.
46.
Gao
,
Y.
,
Ruestes
,
C. J.
, and
Urbassek
,
H. M.
,
2014
, “
Nanoindentation and Nanoscratching of Iron: Atomistic Simulation of Dislocation Generation and Reactions
,”
Comput. Mater. Sci.
,
90
, pp.
232
240
.
47.
AlMotasem
,
A. T.
,
Bergström
,
J.
,
Gåård
,
A.
,
Krakhmalev
,
P.
, and
Holleboom
,
L.
,
2017
, “
Atomistic Insights on the Wear/Friction Behavior of Nanocrystalline Ferrite During Nanoscratching as Revealed by Molecular Dynamics
,”
Tribol. Lett.
,
65
(
3
), pp.
1
13
.
48.
Flater
,
E. E.
,
Barnes
,
J. D.
,
Hitz Graff
,
J. A.
,
Weaver
,
J. M.
,
Ansari
,
N.
,
Poda
,
A. R.
,
Robert Ashurst
,
W.
,
Khanal
,
S. R.
, and
Jacobs
,
T. D. B.
,
2018
, “
A Simple Atomic Force Microscope-Based Method for Quantifying Wear of Sliding Probes
,”
Rev. Sci. Instrum.
,
89
(
11
), p.
113708
.
49.
Liu
,
J.
,
Jiang
,
Y.
,
Grierson
,
D. S.
,
Sridharan
,
K.
,
Shao
,
Y.
,
Jacobs
,
T. D. B.
,
Falk
,
M. L.
,
Carpick
,
R. W.
, and
Turner
,
K. T.
,
2017
, “
Tribochemical Wear of Diamond-Like Carbon-Coated Atomic Force Microscope Tips
,”
ACS Appl. Mater. Interfaces
,
9
(
40
), pp.
35341
35348
.
You do not currently have access to this content.