Abstract

The conical bearing can withstand both journal and axial load because of the conical-shape fluid film, and an investigation concerning the thermodynamic lubrication and stability properties is proposed for a conical hydrostatic/hydrodynamic floating ring bearing theoretically and experimentally. The finite element method is coupled with the finite difference method to solve the variable-viscosity Reynolds equations, thermal energy equations, and the corresponding boundary conditions for the inner and outer films in a floating ring equilibrium state, and the conical bearing-rotor dynamic and stability performance models are built up with the perturbation theory and Routh–Hurwitz method. The primary characteristics parameters that are obtained under different operational conditions suggested that there presents a significant temperature gradient distribution over the lubricated domain, the thermal effects decrease the load carrying capacity, friction power loss, and stiffness and damping coefficients, and the viscous dissipation influences the variation of threshold instability speed with eccentricity and reduces its maximum value. In experiments, the temperature distributions of the oil leakage flow are measured to compare with the calculated results for the validation of the mathematic model using an infrared thermal imager, and the thermal effects need to be taken into consideration for the bearing lubrication analysis and design.

References

1.
Xie
,
Z.
,
Shen
,
N.
,
Zhu
,
W.
,
Tian
,
W.
, and
Liang
,
H.
,
2020
, “
Theoretical and Experimental Investigation on the Influences of Misalignment on the Lubrication Performances and Lubrication Regimes Transition of Water Lubricated Bearing
,”
Mech. Syst. Signal Process.
,
149
, p.
107211
.
2.
Pfeil
,
S.
,
Gravenkamp
,
H.
,
Duvigneau
,
F.
, and
Woschke
,
E.
,
2021
, “
Scaled Boundary Finite Element Method for Hydrodynamic Bearings in Rotordynamic Simulations
,”
Int. J. Mech. Sci.
,
199
, p.
106427
.
3.
Singh
,
A.
, and
Sharma
,
S. C.
,
2021
, “
Analysis of a Double Layer Porous Hybrid Journal Bearing Considering the Combined Influence of Wear and Non-Newtonian Behaviour of Lubricant
,”
Meccanica
,
56
(
1
), pp.
73
98
.
4.
Zuo
,
X.
,
Wang
,
J.
,
Yin
,
Z.
, and
Li
,
S.
,
2013
, “
Comparative Performance Analysis of Conical Hydrostatic Bearings Compensated by Variable Slot and Fixed Slot
,”
Tribol. Int.
,
66
, pp.
83
92
.
5.
Yoshimoto
,
S.
,
Oshima
,
S.
,
Danbara
,
S.
, and
Shitara
,
T.
,
2002
, “
Stability of Water-Lubricated, Hydrostatic, Conical Bearings With Spiral Grooves for High-Speed Spindles
,”
ASME J. Tribol.
,
124
(
2
), pp.
398
405
.
6.
Khakse
,
P. G.
,
Phalle
,
V. M.
, and
Mantha
,
S. S.
,
2017
, “
Orifice Compensated Performance Characteristics of Hybrid Hole-Entry Conical Journal Bearing
,”
Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol.
,
231
(
3
), pp.
316
331
.
7.
Khakse
,
P. G.
,
Phalle
,
V. M.
, and
Mantha
,
S. S.
,
2016
, “
Performance Analysis of a Nonrecessed Hybrid Conical Journal Bearing Compensated With Capillary Restrictors
,”
ASME J. Tribol.
,
138
(
1
), p.
011703
.
8.
Rana
,
N. K.
,
Gautam
,
S. S.
, and
Verma
,
S.
,
2019
, “
Stiffness and Damping Characteristics of Conical Multirecess Hybrid Journal Bearing for Different Load Arrangements
,”
SN Appl. Sci.
,
1
(
6
), pp.
1
13
.
9.
Guo
,
H.
,
Lai
,
X. M.
, and
Cen
,
S. Q.
,
2009
, “
Theoretical and Experimental Study on Dynamic Coefficients and Stability for a Hydrostatic/Hydrodynamic Conical Bearing
,”
ASME J. Tribol.
,
131
(
4
), p.
41701
.
10.
Khalil
,
M. F.
,
Kassab
,
S. Z.
, and
Ismail
,
A. S.
,
1993
, “
Performance of Externally Pressurized Conical Thrust Bearing Under Laminar and Turbulent Flow Conditions
,”
Wear
,
166
(
2
), pp.
147
154
.
11.
Sinha
,
P.
,
Chandra
,
P.
, and
Bhartiya
,
S. S.
,
2001
, “
Thermal Effects in Externally Pressurized Porous Conical Bearings With Variable Viscosity
,”
Acta Mech.
,
149
(
1
), pp.
215
227
.
12.
Rajput
,
A. K.
, and
Sharma
,
S. C.
,
2013
, “
Analysis of Externally Pressurized Multirecess Conical Hybrid Journal Bearing System Using Micropolar Lubricant
,”
Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol.
,
227
(
9
), pp.
943
961
.
13.
Sharma
,
S. C.
, and
Kumar
,
A.
,
2021
, “
On the Behaviour of Roughened Conical Hybrid Journal Bearing System Operating With MR Lubricant
,”
Tribol. Int.
,
156
, p.
106824
.
14.
Zhang
,
C.
,
Wang
,
Y.
,
Men
,
R.
,
He
,
H.
, and
Chen
,
W.
,
2019
, “
Dynamic Behaviors of a High-Speed Turbocharger Rotor on Elliptical Floating Ring Bearings
,”
Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol.
,
233
(
12
), pp.
1785
1799
.
15.
Tatara
,
A.
,
1970
, “
An Experimental Study of the Stabilizing Effect of Floating-Bush Journal Bearings
,”
Bull. JSME
,
13
(
61
), pp.
858
863
.
16.
Li
,
C.-H.
, and
Rohde
,
S. M.
,
1981
, “
On the Steady State and Dynamic Performance Characteristics of Floating Ring Bearings
,”
ASME J. Tribol.
,
103
(
3
), pp.
389
397
.
17.
Zhang
,
C.
,
Men
,
R.
,
He
,
H.
, and
Wei
,
C.
,
2018
, “
Effects of Circumferential and Axial Grooves on the Nonlinear Oscillations of the Full Floating Ring Bearing Supported Turbocharger Rotor
,”
Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol.
,
233
(
5
), pp.
741
757
.
18.
Novotný
,
P.
,
Škara
,
P.
, and
Hliník
,
J.
,
2018
, “
The Effective Computational Model of the Hydrodynamics Journal Floating Ring Bearing for Simulations of Long Transient Regimes of Turbocharger Rotor Dynamics
,”
Int. J. Mech. Sci.
,
148
, pp.
611
619
.
19.
Holt
,
C.
,
Andrés
,
L. S.
,
Sahay
,
S.
,
Tang
,
P.
,
Rue
,
G.
, and
Gjika
,
K.
,
2005
, “
Test Response and Nonlinear Analysis of a Turbocharger Supported on Floating Ring Bearings
,”
ASME J. Vib. Acoust.
,
127
(
2
), pp.
107
115
.
20.
Dyk
,
Š.
,
Smolík
,
L.
, and
Hajžman
,
M.
,
2018
, “
Effect of Various Analytical Descriptions of Hydrodynamic Forces on Dynamics of Turbochargers Supported by Floating Ring Bearings
,”
Tribol. Int.
,
126
, pp.
65
79
.
21.
Singh
,
A.
, and
Gupta
,
T. C.
,
2020
, “
Effect of Rotating Unbalance and Engine Excitations on the Nonlinear Dynamic Response of Turbocharger Flexible Rotor System Supported on Floating Ring Bearings
,”
Arch. Appl. Mech.
,
90
(
5
), pp.
1117
1134
.
22.
Smolík
,
L.
, and
Dyk
,
Š.
,
2020
, “
Towards Efficient and Vibration-Reducing Full-Floating Ring Bearings in Turbochargers
,”
Int. J. Mech. Sci.
,
175
, p.
105516
.
23.
Soni
,
S.
, and
Vakharia
,
D. P.
,
2017
, “
Performance Analysis of a Finite Noncircular Floating Ring Bearing in Turbulent Flow Regime
,”
Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol.
,
231
(
7
), pp.
869
888
.
24.
Woschke
,
E.
,
Daniel
,
C.
, and
Nitzschke
,
S.
,
2017
, “
Excitation Mechanisms of Non-Linear Rotor Systems With Floating Ring Bearings—Simulation and Validation
,”
Int. J. Mech. Sci.
,
134
, pp.
15
27
.
25.
Chatzisavvas
,
I.
,
Nowald
,
G.
,
Schweizer
,
B.
, and
Koutsovasilis
,
P.
,
2017
, “
Experimental and Numerical Investigations of Turbocharger Rotors on Full-Floating Ring Bearings With Circumferential Oil-Groove
,”
Proceedings of ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
,
Charlotte, NC
, GT2017-64628.
26.
Andrés
,
L. S.
, and
Kerth
,
J.
,
2004
, “
Thermal Effects on the Performance of Floating Ring Bearing for Turbocharger
,”
Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol.
,
218
(
5
), pp.
437
450
.
27.
Yang
,
S.
,
Guo
,
H.
,
Zhang
,
S. L.
, and
Xia
,
B. Q.
,
2021
, “
Thermohydrodynamic Characteristics and Stability Analysis for a Journal Hybrid Floating Ring Bearing Within Laminar and Turbulent Mixed Flow Regime
,”
ASME J. Tribol.
,
143
(
3
), p.
031801
.
28.
Wang
,
Y.
,
Ren
,
X. D.
,
Li
,
X. S.
, and
Gu
,
C. W.
,
2017
, “
Numerical Investigation of Air-Oil-Thermal Coupling Mechanism in Floating Ring Bearings
,”
ASME J. Tribol.
,
140
(
3
), p.
031701
.
29.
Kim
,
S.
, and
Palazzolo
,
A. B.
,
2017
, “
Effects of Thermo Hydrodynamic (THD) Floating Ring Bearing Model on Rotordynamic Bifurcation
,”
Int. J. Non-Linear Mech.
,
95
, pp.
30
41
.
30.
Singla
,
A.
, and
Chauhan
,
A.
,
2016
, “
Simulation Studies on Static Thermal Behaviour of True Elliptical and Orthogonally Displaced Non-Circular Journal Bearing
,”
Ind. Lubr. Tribol.
,
68
(
3
), pp.
349
360
.
31.
Kennedy
,
J. S.
,
Sinha
,
P.
, and
Rodkiewicz
,
C. M.
,
1988
, “
Thermal Effects in Externally Pressurized Conical Bearings With Variable Viscosity
,”
ASME J. Tribol.
,
110
(
2
), pp.
201
211
.
32.
Feng
,
H.
,
Jiang
,
S.
, and
Ji
,
A.
,
2019
, “
Investigations of the Static and Dynamic Characteristics of Water-Lubricated Hydrodynamic Journal Bearing Considering Turbulent, Thermohydrodynamic and Misaligned Effects
,”
Tribol. Int.
,
130
, pp.
245
260
.
33.
Wu
,
N.
,
Guo
,
H.
,
Yang
,
S.
, and
Zhang
,
S.
,
2020
, “
Thermal Effect on Stability and Minimum Oil Film Thickness of a Deep/Shallow Pockets Conical Bearing
,”
Ind. Lubr. Tribol.
,
72
(
10
), pp.
1251
1257
.
34.
Chen
,
C. H.
,
Kang
,
Y.
,
Chang
,
Y.-P.
,
Wang
,
Y.-P.
, and
Lee
,
H.-H.
,
2006
, “
Influence of Restrictor on the Stability of the Rigid Rotor-Hybrid Bearing System
,”
J. Sound Vib.
,
297
(
3–5
), pp.
635
648
.
35.
Merelli
,
C. E.
,
Barilá
,
D. O.
,
Vignolo
,
G. G.
, and
Quinzani
,
L. M.
,
2019
, “
Dynamic Coefficients of Finite Length Journal Bearing. Evaluation Using a Regular Perturbation Method
,”
Int. J. Mech. Sci.
,
151
, pp.
251
262
.
36.
Hatakenaka
,
K.
,
Tanaka
,
M.
, and
Suzuki
,
K.
,
2002
, “
A Theoretical Analysis of Floating Bush Journal Bearing With Axial Oil Film Rupture Being Considered
,”
ASME J. Tribol.
,
124
(
3
), pp.
494
505
.
37.
Zhou
,
F.
,
Xu
,
X.
, and
Zhang
,
X.
,
2017
, “
Numerical Integration Method for Triple Integrals Using the Second Kind Chebyshev Wavelets and Gauss–Legendre Quadrature
,”
Comput. Appl. Math.
,
37
(
3
), pp.
3027
3052
.
You do not currently have access to this content.