Abstract

Roller bearing failure can result in downtime or the entire outage of rotating machinery. As a result, a timely incipient bearing defect must be diagnosed to ensure optimal process operation. Modern condition monitoring necessitates the use of deep independent component analysis (DICA) to diagnose incipient bearing failure. This paper presents a deep independent component analysis method based on variational modal decomposition (VMD-ICA) to diagnose incipient bearing defect. On a newly established test setup for rotor bearings, fast Fourier techniques are used to extract the vibration responses of bearings that have been artificially damaged using electro-chemical machining. VMD techniques diminish the noise of the measurement data, to decompose data processed into multiple sub-datasets for extracting incipient defect characteristics. The simplicity of the VMD-ICA model enriched the precision of diagnosis correlated to the experimental results with weak fault characteristic signal and noise interference. Moreover, deep VMD-ICA has additionally demonstrated strong performance in comparison to experimental results and is useful for monitoring the condition of industrial machinery.

References

1.
Stefatos
,
G.
, and
Hamza
,
A.
,
2010
, “
Dynamic Independent Component Analysis Approach for Fault Detection and Diagnosis
,”
Expert Syst. Appl.
,
37
(
1
), pp.
8606
8617
.
2.
Fan
,
J.
, and
Wang
,
Y.
,
2013
, “
Fault Detection and Diagnosis of Non-Linear Non-Gaussian Dynamic Processes Using Kernel Dynamic Independent Component Analysis
,”
J. Inf. Sci.
,
47
(
18
), pp.
6961
6971
.
3.
Mao
,
W.
,
Ding
,
L.
,
Tian
,
S. T.
, and
Liang
,
X.
,
2020
, “
Online Detection for Bearing Incipient Fault Based on Deep Transfer Learning
,”
Measurement
,
152
(
1
), p.
107278
.
4.
Cai
,
L.
,
Tian
,
X.
, and
Chen
,
S.
,
2014
, “
A Process Monitoring Method Based on Noisy Independent Component Analysis
,”
Neurocomputing
,
127
(
1
), pp.
231
246
.
5.
Cai
,
L.
, and
Tian
,
X.
,
2014
, “
A New Fault Detection Method for Non-Gaussian Process Based on Robust Independent Component Analysis
,”
Process Saf. Environ. Prot.
,
92
(
6
), pp.
645
658
.
6.
Cai
,
L.
,
Zhu
,
L.
, and
Ni
,
C.
,
2018
, “
Chatter Detection in Milling Process Based on VMD and Energy Entropy
,”
Mech. Syst. Signal Process.
,
105
(
1
), pp.
169
182
.
7.
Wang
,
Z.
,
Chen
,
J.
,
Dong
,
G.
, and
Zhou
,
Y.
,
2011
, “
Constrained Independent Component Analysis and Its Application to Machine Fault Diagnosis
,”
Mech. Syst. Signal Process.
,
25
(
7
), pp.
2501
2512
.
8.
Yu
,
G.
,
Jing
,
N.
,
Bin
,
L.
, and
Rong-Fong
,
F.
,
2014
, “
Envelope Extraction Based Dimension Reduction for Independent Component Analysis in Fault Diagnosis of Rolling Element Bearing
,”
J. Sound Vib.
,
333
(
13
), pp.
2983
2994
.
9.
Iseli
,
E.
,
Guenat
,
E.
,
Tresch
,
R.
, and
Schiffmann
,
J.
,
2019
, “
Analysis of Spiral-Grooved Gas Journal Bearings by the Narrow Groove Theory and the Finite Element Method at Large Eccentricities
,”
ASME J. Tribol.
,
142
(
4
), p.
041802
.
10.
Benwei
,
L.
, and
Yun
,
Z.
,
2011
, “
Supervised Locally Linear Embedding Projection for Machinery Fault Diagnosis
,”
Mech. Syst. Signal Process
,
25
(
8
), pp.
3125
3134
.
11.
McFadden
,
P. D.
, and
Smith
,
J. D.
,
1984
, “
Model for Vibration Produced by a Single Point Defect in a Rolling Element Bearing
,”
J. Sound Vib.
,
96
(
1
), pp.
69
82
.
12.
McFadden
,
P. D.
, and
Smith
,
J. D.
,
1985
, “
Vibration Produced by Multiple Point Defects in a Rolling Element Bearing
,”
J. Sound Vib.
,
98
(
2
), pp.
263
273
.
13.
Patil
,
M. S.
,
Mathew
,
J.
,
Rajendrakumar
,
P. K.
, and
Desai
,
S.
,
2010
, “
A Theoretical Model to Predict the Effect of Localized Defect on Vibrations Associated With Ball Bearing
,”
Int. J. Mech. Sci.
,
52
(
9
), pp.
1193
1201
.
14.
Dick
,
P.
,
Carl
,
H.
,
Nader
,
S.
,
Alireza
,
M. A.
, and
Sarabjeet
,
S.
,
2015
, “
Analysis of Bearing Stiffness Variations Contact Forces and Vibrations in Radially Loaded Double Row Rolling Element Bearing With Raceway Defect
,”
J. Mech. Syst. Signal Process.
,
50–51
(
1
), pp.
139
160
.
15.
Igarashi
,
T.
, and
Kato
,
J.
,
1985
, “
Studies on the Vibration and Sound of Defective Rolling Bearings. Third Report: Vibration of Ball Bearing With Multiple Defects
,”
Bull. JSME
,
28
(
237
), pp.
492
499
.
16.
Sopanen
,
J.
, and
Mikkola
,
A.
,
2003
, “
Dynamic Model of a Deep- Groove Ball Bearings Including Localized and Distributed Defects. Part 1: Theory
,”
Proc. Inst. Mech. Eng. K: J. Multi-body Dyn.
,
217
(
3
), pp.
201
211
.
17.
Sopanen
,
J.
, and
Mikkola
,
A.
,
2003
, “
Dynamic Model of a Deep- Groove Ball Bearings Including Localized and Distributed Defects. Part 2: Implementation and Results
,”
Proc. Inst. Mech. Eng. J: J. Eng. Tribol.
,
217
(
3
), pp.
213
223
.
18.
Tandon
,
N.
, and
Choudhury
,
A.
,
1997
, “
An Analytical Model for the Prediction of the Vibration Response of Rolling Element Bearings Due to Localized Defect
,”
J. Sound Vib.
,
205
(
3
), pp.
275
292
.
19.
Tandon
,
N.
, and
Choudhury
,
A.
,
1998
, “
A Theoretical Model to Predict Vibration Response of Rolling Bearings to Distributed Defects Under Radial Load
,”
ASME J. Vib. Acoust.
,
120
(
3
), pp.
214
220
.
20.
Choudhury
,
A.
, and
Tandon
,
N.
,
2006
, “
Vibration Response of Rolling Element Bearing in a Rotor Bearing System to a Local Defect Under Radial Load
,”
ASME J. Tribol.
,
128
(
2
), pp.
252
261
.
21.
Tomovic
,
R.
,
Miltenovic
,
V.
,
Banic
,
M.
, and
Miltenovic
,
A.
,
2010
, “
Vibration Response of Rigid Rotor in Unloaded Rolling Element Bearing
,”
Int. J. Mech. Sci.
,
52
(
9
), pp.
1176
1185
.
22.
Desavale
,
R. G.
,
Venkatachalam
,
R.
, and
Chavan
,
S. P.
,
2013
, “
Antifriction Bearings Damage Analysis Using Experimental Data Based Models
,”
ASME J. Tribol.
,
135
(
4
), p.
041105
.
23.
Desavale
,
R. G.
,
Venkatachalam
,
R.
, and
Chavan
,
S. P.
,
2014
, “
Experimental and Numerical Studies on Spherical Roller Bearings Using Multivariable Regression Analysis
,”
ASME J. Vib. Acoust.
,
136
(
2
), p.
021022
.
24.
Desavale
,
R. G.
,
Kanai
,
R. A.
,
Chavan
,
S. P.
,
Venkatachalam
,
R.
, and
Jadhav
,
P. M.
,
2015
, “
Vibration Characteristics Diagnosis of Roller Bearing Using the New Empirical Model
,”
ASME J. Tribol.
,
138
(
1
), p.
011103
.
25.
Desavale
,
R. G.
,
2019
, “
Dynamics Characteristic and Diagnosis of a Rotor-Bearing’s System Through a Dimensional Analysis Approach: An Experimental Study
,”
ASME J. Comput. Nonlinear Dyn.
,
14
(
1
), p.
014501
.
26.
Mufazzal
,
S.
,
Muzzakir
,
S. M.
, and
Khanam
,
S.
,
2021
, “
Theoretical and Experimental Analyses of Vibration Impulses and Their Influence on Accurate Diagnosis of Ball Bearing With Localized Outer Race Defect
,”
J. Sound Vib.
,
513
(
1
), p.
116407
.
27.
Patil
,
S. M.
,
Desavale
,
R. G.
,
Shinde
,
P. V.
, and
Patil
,
V. R.
,
2021
, “Comparative Study of Response of Vibrations for Circular and Square Defects on Components of Cylindrical Roller Bearing Under Different Conditions,”
Innovative Design, Analysis and Development Practices in Aerospace and Automotive Engineering
,
N.
Gascoin
and
E.
Balasubramanian
, eds., Lecture Notes in Mechanical Engineering,
Springer
,
New York
, pp.
189
198
.
28.
Kanai
,
R. A.
,
Desavale
,
R. G.
, and
Chavan
,
S. P.
,
2016
, “
Experimental–Based Fault Diagnosis of Rolling Bearings Using Artificial Neural Network
,”
ASME J. Tribol.
,
138
(
3
), p.
031103
.
29.
Patel
,
V.
,
Tandon
,
N.
, and
Pandey
,
R. K.
,
2010
, “
A Dynamic Model for Vibration Studies of Deep Groove Ball Bearings Considering Single and Multiple Defects in Races
,”
ASME J. Tribol.
,
132
(
4
), p.
041101
.
30.
Liu
,
J.
,
2020
, “
A Dynamic Modelling Method of a Rotor-Roller Bearing-Housing System With a Localized Fault Including the Additional Excitation Zone
,”
J. Sound Vib.
,
469
(
1
), p.
115144
.
31.
Niu
,
L.
,
Cao
,
H.
,
Hou
,
H.
,
Wu
,
B.
,
Lan
,
Y.
, and
Xiong
,
X.
,
2020
, “
Experimental Observations and Dynamic Modeling of Vibration Characteristics of a Cylindrical Roller Bearing With Roller Defects
,”
J. Mech. Syst. Signal Process.
,
138
(
1
), pp.
1
19
.
32.
Rafsanjani
,
A.
,
Abbasion
,
S.
,
Farshidianfar
,
A.
, and
Moeenfard
,
H.
,
2009
, “
Nonlinear Dynamic Modeling of Surface Defects in Rolling Element Bearing Systems
,”
J. Sound Vib.
,
319
(
1
), pp.
1150
1174
.
33.
Yang
,
R.
,
Hou
,
L.
,
Jin
,
Y.
,
Chen
,
Y.
, and
Zhang
,
Z.
,
2018
, “
The Varying Compliance Resonance in a Ball Bearing Rotor System Affected by Different Ball Numbers and Rotor Eccentricities
,”
ASME J. Tribol.
,
140
(
3
), p.
051101
.
34.
Jadhav
,
P. M.
,
Kumbhar
,
S. G.
,
Desavale
,
R. G.
, and
Patil
,
S. B.
,
2020
, “
Distributed Fault Diagnosis of Rotor-Bearing System Using Dimensional Analysis and Experimental Methods
,”
Measurement
,
166
(
1
), pp.
108239
108259
.
35.
Kumbhar
,
S. G.
,
Sudhagar
,
E. P.
, and
Desavale
,
R. G.
,
2020
, “
Theoretical and Experimental Studies to Predict Vibration Responses of Defects in Spherical Roller Bearings Using Dimension Theory
,”
Measurement
,
161
(
1
), pp.
107846
107811
.
36.
Kumbhar
,
S. G.
, and
Sudhagar
,
E. P.
,
2020
, “
Fault Diagnostics of Roller Bearings Using Dimension Theory
,”
ASME J. Nondestruct. Eval. Diagn. Progn. Eng. Syst.
,
4
(
1
), pp.
011001
011010
.
37.
Salunkhe
,
V. G.
,
Desavale
,
R. G.
, and
Jagadeesha
,
T.
,
2021
, “
Experimental Frequency-Domain Vibration Based Fault Diagnosis of Roller Element Bearings Using Support Vector Machine
,”
ASCE-ASME J. Risk Uncertain. Eng. Syst. B: Mech. Eng.
,
7
(
2
), p.
021001
.
38.
Londhe
,
N. D.
,
Arakere
,
N. K.
, and
Ghatu
,
S.
,
2019
, “
Effect of Plasticity on the Dynamic Capacity of Modern Bearing Steels
,”
ASME J. Tribol. Int.
,
133
(
1
), pp.
160
171
.
39.
Liu
,
J.
, and
Xu
,
Z.
,
2022
, “
A Simulation Investigation of Lubricating Characteristics for a Cylindrical Roller Bearing of a High-Power Gearbox
,”
ASME J. Tribol. Int.
,
167
(
1
), p.
107373
.
40.
Liu
,
J.
,
Wang
,
L.
, and
Shi
,
Z.
,
2022
, “
Dynamic Modelling of the Defect Extension and Appearance in a Cylindrical Roller Bearing
,”
Mech. Syst. Signal Process
,
173
(
1
), p.
109040
.
41.
Liu
,
J.
,
Xu
,
Z.
,
Zhou
,
L.
,
Yu
,
W.
, and
Shao
,
Y.
,
2019
, “
A Statistical Feature Investigation of the Spalling Propagation Assessment for a Ball Bearing
,”
Mech. Mach. Theory
,
131
(
1
), pp.
336
350
.
42.
Yan
,
X.
,
Liu
,
Y.
,
Zhang
,
W.
,
Jia
,
M.
, and
Wang
,
X.
,
2022
, “
Research on a Novel Improved Adaptive Variational Mode Decomposition Method in Rotor Fault Diagnosis
,”
Appl. Sci.
,
10
(
5
), pp.
1696
1610
.
43.
Fu
,
L.
,
Ma
,
Z.
,
Wu
,
D.
,
Liu
,
J.
,
Xu
,
F.
,
Zhong
,
Q.
, and
Zhu
,
T.
,
2022
, “
Bearing Cog: A Bearing Fault Diagnosis Method Under Variable Operational Conditions
,”
Appl. Sci.
,
12
(
10
), pp.
5240
5215
.
You do not currently have access to this content.