Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Flow-induced vibration inevitably leads to fretting damage behavior on the surface of steam generator tubes. Impact-sliding fretting wear indicates that the alloy tube surface experiences a dynamic impact and a sliding shear behavior simultaneously. Finite element analysis was conducted to investigate the dynamic mechanical response of the Inconel 690 alloy tube, which is influenced by different impact-sliding fretting parameters under frictionless conditions. Results showed that the effects of sliding frequency and amplitude on the contact stress, elastic−plastic strain, and energy dissipation of the fretting interface were not directly proportional. Increasing the impact amplitude would enhance this dynamic behavior effect.

References

1.
Zhang
,
S. Z.
,
Tian
,
C.
,
Liu
,
L. Y.
, and
Tan
,
W.
,
2023
, “
Effect of Temperature on Simulated Flow-Induced Vibration Wear Behavior of Inconel 690 Alloy Mated With 304 SS in Pressurized Steam/Water Environment
,”
ASME J. Tribol.
,
145
(
3
), p.
031707
.
2.
Cai
,
Z. B.
,
Li
,
Z. Y.
,
Yin
,
M. G.
,
Zhu
,
M. H.
, and
Zhou
,
Z. R.
,
2020
, “
A Review of Fretting Study on Nuclear Power Equipment
,”
Tribol. Int.
,
144
, p.
106095
.
3.
Wang
,
Y.
,
Gang
,
L.
,
Liu
,
S.
, and
Cui
,
Y.
,
2021
, “
Coupling Fractal Model for Fretting Wear on Rough Contact Surfaces
,”
ASME J. Tribol.
,
143
(
9
), p.
091701
.
4.
Ahmadi
,
A.
, and
Sadeghi
,
F.
,
2022
, “
A Three-Dimensional Finite Element Damage Mechanics Model to Simulate Fretting Wear of Hertzian Line and Circular Contacts in Partial Slip Regime
,”
ASME J. Tribol.
,
144
(
5
), p.
051602
.
5.
Yue
,
T. Y.
, and
Wahab
,
M. A.
,
2017
, “
Finite Element Analysis of Fretting Wear Under Variable Coefficient of Friction and Different Contact Regimes
,”
Tribol. Int.
,
107
, pp.
274
282
.
6.
Cai
,
M. X.
,
Zhang
,
P.
,
Xiong
,
Q. W.
,
Cai
,
Z. B.
,
Luo
,
S. Y.
,
Gu
,
L.
, and
Zeng
,
L. C.
,
2023
, “
Finite Element Simulation of Fretting Wear Behaviors Under the Ball-on-Flat Contact Configuration
,”
Tribol. Int.
,
177
, p.
107930
.
7.
Bian
,
W. W.
,
Hong
,
C.
,
Xin
,
L.
,
Kang
,
L. Z.
,
Han
,
Y. M.
,
Liu
,
H.
,
Shoji
,
T.
, and
Lu
,
Y. H.
,
2022
, “
Effect of the Cycle Number on Fretting Wear Behavior of Alloy 690TT Tube in High-Temperature Pressurized Water
,”
J. Nucl. Mater.
,
567
, p.
153828
.
8.
Kong
,
Y.
,
Bennett
,
C. J.
, and
Hyde
,
C. J.
,
2022
, “
A Computationally Efficient Method for the Prediction of Fretting Wear in Practical Engineering Applications
,”
Tribol. Int.
,
165
, p.
107317
.
9.
Ahmadi
,
A.
, and
Sadeghi
,
F.
,
2021
, “
A Novel Three-Dimensional Finite Element Model to Simulate Third Body Effects on Fretting Wear of Hertzian Point Contact in Partial Slip
,”
ASME J. Tribol.
,
143
(
4
), p.
041502
.
10.
Done
,
V.
,
Kesavan
,
D.
,
Murali
,
K. R.
,
Chaise
,
T.
, and
Nelias
,
D.
,
2017
, “
Semi Analytical Fretting Wear Simulation Including Wear Debri
,”
Tribol. Int.
,
109
, pp.
1
9
.
11.
Xiong
,
G. M.
,
Wang
,
Y. P.
,
Long
,
T.
,
Guo
,
K.
, and
Tan
,
W.
,
2021
, “
CFD Simulation and Flow-Induced Vibration Evaluation of PWR Steam Generator U Tubes
,”
Prog. Nucl. Energy
,
141
, p.
103937
.
12.
Cai
,
Z. B.
,
Chen
,
Z. Q.
,
Sun
,
Y.
,
Jin
,
J. Y.
,
Peng
,
J. F.
, and
Zhu
,
M. H.
,
2019
, “
Development of a Novel Cycling Impact–Sliding Wear Rig to Investigate the Complex Friction Motion
,”
Friction
,
7
(
1
), pp.
32
43
.
13.
Tan
,
D. Q.
,
Mo
,
J. L.
,
He
,
W. F.
,
Luo
,
J.
,
Zhang
,
Q.
,
Zhu
,
M. H.
, and
Zhou
,
Z. R.
,
2019
, “
Suitability of Laser Shock Peening to Impact-Sliding Wear in Different System Stiffnesses
,”
Surf. Coat. Technol.
,
358
, pp.
22
35
.
14.
Tan
,
D. Q.
,
Yang
,
X. Q.
,
He
,
Q.
,
Mo
,
J. L.
,
Zhuang
,
W. H.
, and
He
,
J. F.
,
2021
, “
Impact-Sliding Wear Properties of PVD CrN and WC/C Coatings
,”
Surf. Eng.
,
37
(
1
), pp.
12
23
.
15.
Yin
,
M. G.
,
Thibaut
,
C.
,
Wang
,
L. W.
,
Nélias
,
D.
,
Zhu
,
M. H.
, and
Cai
,
Z. B.
,
2022
, “
Impact-Sliding Wear Response of 2.25 Cr1Mo Steel Tubes: Experimental and Semi-Analytical Method
,”
Friction
,
10
(
3
), pp.
473
490
.
16.
Yin
,
M. G.
,
Cai
,
Z. B.
,
Yu
,
Y. Q.
, and
Zhu
,
M. H.
,
2020
, “
Impact-Sliding Wear Behaviors of 304SS Influenced by Different Impact Kinetic Energy and Sliding Velocity
,”
Tribol. Int.
,
143
, p.
106057
.
17.
Guo
,
K.
,
Tian
,
C.
,
Wang
,
Y. P.
,
Wang
,
Y.
, and
Tan
,
W.
,
2020
, “
An Energy-Based Model for Impact-Sliding Fretting Wear Between Tubes and Anti-Vibration Bars in Steam Generators
,”
Tribol. Int.
,
148
, p.
106305
.
18.
Wang
,
J. F.
,
Xue
,
W. H.
,
Gao
,
S. Y.
,
Wu
,
B.
,
Li
,
S.
, and
Duan
,
D. L.
,
2020
, “
System Deformation Behavior of Friction Pair in Fretting Wear
,”
ASME J. Tribol.
,
142
(
12
), p.
121702
.
19.
Gessesse
,
Y. B.
, and
Attia
,
M. H.
,
2004
, “
On the Mechanics of Crack Initiation and Propagation in Elasto-Plastic Materials in Impact Fretting Wear
,”
ASME J. Tribol.
,
126
(
2
), pp.
395
403
.
20.
Koshy
,
C. S.
,
Flores
,
P.
, and
Lankarani
,
H. M.
,
2013
, “
Study of the Effect of Contact Force Model on the Dynamic Response of Mechanical Systems With Dry Clearance Joints: Computational and Experimental Approaches
,”
Nonlinear Dyn.
,
73
(
1–2
), pp.
325
338
.
21.
Yun
,
J. Y.
,
Park
,
M. C.
,
Shin
,
G. S.
,
Heo
,
J. H.
,
Kim
,
D. I.
, and
Kim
,
S. J.
,
2014
, “
Effects of Amplitude and Frequency on the Wear Mode Change of Inconel 690 SG Tube Mated with SUS 409
,”
Wear
,
313
(
1–2
), pp.
83
88
.
22.
Fouvry
,
S.
,
Arnaud
,
P.
,
Mignot
,
A.
, and
Neubauer
,
P.
,
2017
, “
Contact Size, Frequency and Cyclic Normal Force Effects on Ti–6Al–4V Fretting Wear Processes: An Approach Combining Friction Power and Contact Oxygenation
,”
Tribol. Int.
,
113
, pp.
460
473
.
23.
Ma
,
X.
,
Tan
,
W.
,
Bonzom
,
R.
,
Mi
,
X.
, and
Zhu
,
G. R.
,
2023
, “
Impact–Sliding Fretting Tribocorrosion Behavior of 316L Stainless Steel in Solution With Different Halide Concentrations
,”
Friction
,
22
(
12
), pp.
1
19
.
24.
Doan
,
D. Q.
, and
Fang
,
T. H.
,
2022
, “
Effect of Vibration Parameters on the Material Removal Characteristics of High-Entropy Alloy in Scratching
,”
Int. J. Mech. Sci.
,
232
, p.
107597
.
25.
Wu
,
J. Z.
,
Welcome
,
D. E.
,
Krajnak
,
K.
, and
Dong
,
R. G.
,
2007
, “
Finite Element Analysis of the Penetrations of Shear and Normal Vibrations Into the Soft Tissues in a Fingertip
,”
Med. Eng. Phys.
,
29
(
6
), pp.
718
727
.
26.
Xiao
,
L.
,
Xu
,
Y. Q.
, and
Chen
,
Z. Y.
,
2022
, “
A Numerical Simulation of Fretting Wear Considering the Dynamic Evolution of Debris for the Coated Contact Surface
,”
ASME J. Tribol.
,
144
(
4
), p.
041701
.
27.
Zhang
,
P.
,
Lu
,
W. L.
,
Liu
,
X. J.
,
Zhai
,
W. Z.
,
Zhou
,
M. Z.
, and
Zeng
,
W. H.
,
2018
, “
Torsional Fretting and Torsional Sliding Wear Behaviors of CuNiAl Against 42CrMo4 Under dry Condition
,”
Tribol. Int.
,
118
, pp.
11
19
.
28.
Kirk
,
A. M.
,
Sun
,
W.
,
Bennett
,
C. J.
, and
Shipway
,
P. H.
,
2021
, “
Interaction of Displacement Amplitude and Frequency Effects in Fretting Wear of a High Strength Steel: Impact on Debris bed Formation and Subsurface Damage
,”
Wear
,
482
, p.
203981
.
29.
Zhang
,
F.
,
Yin
,
M. G.
, and
Li
,
Q.
,
2022
, “
Fretting Wear Behavior of MicroArc Oxidation Coating Fabricated on AZ91 Magnesium Alloy
,”
ASME J. Tribol.
,
144
(
4
), p.
041703
.
You do not currently have access to this content.