Abstract
The major oil supply for the ball-on-disc contact is provided by the lubricating oil reservoir and the oil ridges; however, the regularity of their changes has not been thoroughly investigated. In this study, the laser-induced fluorescence technique was adopted to determine the film distribution of the oil reservoir and the layer thickness of the oil ridges on the free surface. It clearly depicts the changes in the oil reservoir and reveals the mechanism of the oil reflow surrounding the contact region under various driving actions. The results may give a new perspective and a fuller understanding of the lubricating oil supply by revealing additional information about the oil supply surrounding the contact region.
Graphical Abstract Figure
References
1.
Cann
, P. M. E.
, Damiens
, B.
, and Lubrecht
, A. A.
, 2004
, “The Transition Between Fully Flooded and Starved Regimes in EHL
,” Tribol. Int.
, 37
(10
), pp. 859
–864
. 2.
Chevalier
, F.
, Cann
, P.
, Colin
, F.
, Dalmaz
, G.
, and Lubrecht
, A.
, 1998
, “Film Thickness in Starved EHL Point Contacts
,” ASME J. Tribol.
, 120
(1
), pp. 126
–133
. 3.
Wedeven
, L. D.
, Evans
, D.
, and Cameron
, A.
, 1971
, “Optical Analysis of Ball Bearing Starvation
,” ASME J. Lubr. Technol.
, 93
(3
), pp. 349
–361
. 4.
Liang
, H.
, Guo
, D.
, and Luo
, J. B.
, 2014
, “Experimental Investigation of Lubrication Film Starvation of Polyalphaolefin Oil at High Speeds
,” Tribol. Lett.
, 56
(3
), pp. 491
–500
. 5.
Pemberton
, J.
, and Cameron
, A.
, 1976
, “A Mechanism of Fluid Replenishment in Elastohydrodynamic Contacts
,” Wear
, 37
(1
), pp. 185
–190
. 6.
Chiu
, Y.
, 1974
, “An Analysis and Prediction of Lubricant Film Starvation in Rolling Contact Systems
,” ASLE Trans.
, 17
(1
), pp. 22
–35
. 7.
Guangteng
, G.
, and Spikes
, H.
, 1996
, “The Role of Surface Tension and Disjoining Pressure in Starved and Parched Lubrication
,” Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
, 210
(2
), pp. 113
–124
. 8.
Jacod
, B.
, Pubilier
, F.
, Cann
, P. M. E.
, and Lubrecht
, A. A.
, 1999
, “An Analysis of Track Replenishment Mechanisms in the Starved Regime
,” Tribol. Ser.
, 36
, pp. 483
–492
. 9.
Han
, B.
, Wang
, W.
, and Zhao
, Z.
, 2016
, “Oil Replenishment Mechanism of Lubricated Contact at Low Speed
,” Tribology
, 36
(3
), pp. 341
–347
.10.
Van Zoelen
, M.
, Venner
, C. H.
, and Lugt
, P. M.
, 2009
, “Prediction of Film Thickness Decay in Starved Elasto-Hydrodynamically Lubricated Contacts Using a Thin Layer Flow Model
,” Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
, 223
(3
), pp. 541
–552
. 11.
van Zoelen
, M. T.
, Venner
, C. H.
, and Lugt
, P. M.
, 2008
, “Free Surface Thin Layer Flow on Bearing Raceways
,” ASME J. Tribol.
, 130
(2
), p. 021802
. 12.
van Zoelen
, M. T.
, Venner
, C. H.
, and Lugt
, P. M.
, 2010
, “Free Surface Thin Layer Flow in Bearings Induced by Centrifugal Effects
,” Tribol. Trans.
, 53
(3
), pp. 297
–307
. 13.
Liang
, H.
, Guo
, D.
, Ma
, L.
, and Luo
, J.
, 2015
, “Experimental Investigation of Centrifugal Effects on Lubricant Replenishment in the Starved Regime at High Speeds
,” Tribol. Lett.
, 59
(1
), pp. 1
–9
. 14.
Ali
, F.
, Křupka
, I.
, and Hartl
, M.
, 2013
, “Enhancing the Parameters of Starved EHL Point Conjunctions by Artificially Induced Replenishment
,” Tribol. Int.
, 66
, pp. 134
–142
. 15.
Li
, X. M.
, Guo
, F.
, Wong
, P. L.
, and Zhao
, Y.
, 2018
, “Regulation of Lubricant Supply by Wettability Gradient in Rolling EHL Contacts
,” Tribol. Int.
, 120
, pp. 565
–574
. 16.
Bruyere
, V.
, Fillot
, N.
, Morales-Espejel
, G. E.
, and Vergne
, P.
, 2012
, “A Two-Phase Flow Approach for the Outlet of Lubricated Line Contacts
,” ASME J. Tribol.
, 134
(4
), p. 041503
. 17.
van Emden
, E.
, Venner
, C. H.
, and Morales-Espejel
, G. E.
, 2016
, “Aspects of Flow and Cavitation Around an EHL Contact
,” Tribol. Int.
, 95
, pp. 435
–448
. 18.
Fischer
, D.
, von Goeldel
, S.
, Jacobs
, G.
, and Stratmann
, A.
, 2021
, “Numerical Investigation of Effects on Replenishment in Rolling Point Contacts Using CFD Simulations
,” Tribol. Int.
, 157
, p. 106858
. 19.
Chen
, H.
, Wang
, W.
, Liang
, H.
, and Zhao
, Z.
, 2021
, “Patterns of Interfacial Flow Around a Lubricated Rolling Point Contact Region
,” Phys. Fluids
, 33
(10
), p. 102118
. 20.
Chen
, H.
, Wang
, W.
, Zhao
, Z.
, and Liang
, H.
, 2022
, “Evolution and Flow Maps of the Oil Layer in Successive Rolling Point Contact Systems: Bearing as a Case
,” Phys. Fluids
, 34
(3
), p. 032110
. 21.
Smart
, A.
, and Ford
, R.
, 1974
, “Measurement of Thin Liquid Films by a Fluorescence Technique
,” Wear
, 29
(1
), pp. 41
–47
. 22.
Poll
, G.
, Gabelli
, A.
, Binnington
, P. G.
, and Qu
, J.
, 1992
, “Dynamic Mapping of Rotary Lip Seal Lubricant Films by Fluorescent Image Processing,” Fluid Sealing
, B. S.
Nau
, ed., Springer
, New York
, pp. 55
–77
.23.
Sugimura
, J.
, Hashimoto
, M.
, and Yamamoto
, Y.
, 2000
, “Study of Elastohydrodynamic Contacts With Fluorescence Microscope
,” Tribol. Ser.
, 38
, pp. 609
–617
. 24.
Qian
, S.
, Guo
, D.
, Liu
, S.
, and Lu
, X.
, 2012
, “Experimental Investigation of Lubricant Flow Properties Under Micro Oil Supply Condition
,” ASME J. Tribol.
, 134
(4
), p. 041501
. 25.
Košťál
, D.
, Nečas
, D.
, Šperka
, P.
, Svoboda
, P.
, Křupka
, I.
, and Hartl
, M.
, 2015
, “Lubricant Rupture Ratio at Elastohydrodynamically Lubricated Contact Outlet
,” Tribol. Lett.
, 59
(3
), pp. 1
–9
.26.
Haugland
, R.
, 1996
, Handbook of Fluorescent Probes and Research Chemicals
, Molecular Probes Inc.
, Eugene, Oregon
.27.
Zhang
, Y.
, Wang
, W.
, Zhang
, S.
, and Zhao
, Z.
, 2017
, “Experimental Study of EHL Film Thickness Behaviour at High Speed in Ball-on-Ring Contacts
,” Tribol. Int.
, 113
, pp. 216
–223
. 28.
Hidrovo
, C. H.
, Brau
, R. R.
, and Hart
, D. P.
, 2004
, “Excitation Nonlinearities in Emission Reabsorption Laser-Induced Fluorescence Techniques
,” Appl. Opt.
, 43
(4
), pp. 894
–913
. 29.
Chen
, H.
, Wang
, W.
, Ge
, X.
, and Liang
, H.
, 2024
, “Pixel-dependent Laser-Induced Fluorescence Method for Determining Thin Liquid Film Thickness Distribution
,” Phys. Fluids
, 36
(1
), p. 012111. Copyright © 2024 by ASME
You do not currently have access to this content.