Abstract

In general, the roller end of a cylindrical roller bearing engages with the rib. The contact conditions are dictated by the geometry of the rib and the roller end, which determine the axial load-carrying capacity of the bearing and tribological behavior at the surfaces of the rib and roller end. In this study, a model of cylindrical roller bearings was developed under combined load. In the model, the quasi-dynamic calculation was coupled with the elastohydrodynamic lubrication program to evaluate axial load-carrying capacity and frictional loss. Results indicated that spherical roller ends with small radii combined with toroidal concave ribs were advantageous with regard to low frictional loss under light axial load. In addition, toroidal rib geometries have higher axial load-carrying capacity. When the roller was subjected to severe axial load, the combination of the optimized spherical roller ends and toroidal rib geometries can produce frictional loss comparable to that of the tapered rib.

References

1.
Korrenn
,
H. D. I.
,
1970
, “
The Axial Load-Carrying Capacity of Radial Cylindrical Roller Bearings
,”
ASME J. Lubr. Tech.
,
92
(
1
), pp.
129
134
.
2.
Brown
,
S. R.
, and
Poon
,
S. Y.
,
1983
, “
The Lubrication of the Roller-Rib Contacts of a Radial Cylindrical Roller Bearing Carrying Thrust Load
,”
ASLE Trans.
,
26
(
3
), pp.
317
324
.
3.
Krzemiński-Freda
,
H.
, and
Warda
,
B.
,
1989
, “
The Effect of Roller End-Flange Contact Shape Upon Frictional Losses and Axial Load of the Radial Cylindrical Roller Bearing
,”
Tribol. Ser.
,
14
, pp.
287
295
.
4.
Cheng
,
W.
,
Shih
,
S.
,
Grace
,
J.
, and
Tu
,
W.
,
2004
, “
Axial Load Effect on Contact Fatigue Life of Cylin
,”
ASME J. Tribol.
,
126
(
2
), pp.
242
247
.
5.
Bayrak
,
R.
, and
Sagirli
,
A.
,
2022
, “
Fatigue Life Analysis of the Radial Cylindrical Roller Bearings: Roller End-Flange Construction Effect
,”
Mech. Based Des. Struct. Mach.
,
51
(
12
), pp.
7030
7055
.
6.
Zhang
,
Z.
,
Qiu
,
X.
, and
Hong
,
Y.
,
1988
, “
EHL Analysis of Rib-Roller End Contact in Tapered Roller Bearings
,”
Tribol. Trans.
,
31
(
4
), pp.
461
467
.
7.
Jiang
,
X.
,
Wong
,
P. L.
, and
Zhang
,
Z.
,
1995
, “
Thermal Non-Newtonian EHL Analysis of Rib-Roller
,”
ASME J. Tribol.
,
117
(
4
), pp.
646
654
.
8.
Zhou
R. S.
, and
Hoeprich
,
M. R.
,
1991
, “
Torque of Tapered Roller Bearings
,”
ASME J. Tribol.
,
113
(
3
), pp.
590
597
.
9.
Colin
,
F.
,
Chevalier
,
F.
,
Chaomleffel
,
J. P.
,
Dalmaz
,
G.
, and
de Mul
,
J.
,
1998
, “
Starved Elastohydrodynamic Lubrication of the Rib-Roller End Contact in Tapered Roller Bearings: Film Thickness, Traction and Moments
,”
Tribol. Ser.
,
34
, pp.
253
263
.
10.
Fujiwara
,
H.
,
Tsujimoto
,
T.
, and
Yamauchi
,
K.
,
2009
, “
Optimized Radius of Roller Large End Face in Tapered Roller Bearings (Machine Elements, Design and Manufacturing)
,”
Trans. Jpn. Soc. Mech. Eng. C
,
75
(
756
), pp.
2319
2326
.
11.
Wirsching
,
S.
,
Marian
,
M.
,
Bartz
,
M.
,
Stahl
,
T.
, and
Wartzack
,
S.
,
2021
, “
Geometrical Optimization of the EHL Roller Face/Rib Contact for Energy Efficiency in Tapered Roller Bearings
,”
Lubricants
,
9
(
7
), p.
67
.
12.
Klebanov
,
I. M.
,
Brazhnikova
,
A. M.
, and
Polyakov
,
K. A.
,
2022
, “
Tapered Roller Bearing Rib-Roller End Interaction at Hydrodynamic Contact
,”
J. Frict. Wear
,
43
(
6
), pp.
391
397
.
13.
Aramaki
,
H.
,
Cheng
,
H. S.
, and
Zhu
,
D.
,
1992
, “
Film Thickness, Friction, and Scuffing Failure of Rib/Roller End Contacts in Cylindrical Roller Bearings
,”
ASME J. Tribol.
,
114
(
2
), pp.
311
316
.
14.
Wang
,
Z.
,
Song
,
J.
,
Li
,
X.
, and
Yu
,
Q.
,
2022
, “
Modeling and Dynamic Analysis of Cylindrical Roller Bearings Under Combined Radial and Axial Loads
,”
ASME J. Tribol.
,
144
(
12
), p.
121203
.
15.
Wang
,
Z.
,
Lv
,
X.
,
Song
,
J.
, and
Khan
,
U.
,
2022
, “
Tolerance Analysis of Cylindrical Roller Bearing Under Combined Radial and Axial Loads
,”
Math. Probl. Eng.
,
2022
, pp.
1
7
.
16.
Ai
,
X.
,
2020
, “Roller Bearing With Enhanced Roller-End and Flange Contact: 17742902.4[P].”
17.
Wolf
,
M.
,
Sanner
,
A.
, and
Fatemi
,
A.
,
2020
, “
A Semi-Analytical Approach for Rapid Detection of Roller-Flange Contacts in Roller Element Bearings
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
235
(
7
), pp.
1440
1449
.
18.
Wolf
,
M.
, and
Fatemi
,
A.
,
2020
, “
Dynamic Simulation of Full Complement Cylindrical Roller Bearings With a Semi-Analytical Roller End-Flange Contact Detection Method
,”
Bearing World J.
,
5
, pp.
123
136
.
19.
Bayrak
,
R.
, and
Sagirli
,
A.
,
2023
, “
Effect of Different Roller End-Flange Constructions on the Fatigue Life of the Cylindrical Roller Bearings: A Novel Flange Deformation Formula
,”
Eksploatacja i Niezawodność—Maintenance Reliab.
,
25
(
4
), pp.
1
17
.
20.
Dormois
,
H.
,
Fillot
,
N.
,
Habchi
,
W.
,
Dalmaz
,
G.
,
Vergne
,
P.
,
Morales-Espejel
,
G. E.
, and
Ioannides
,
E.
,
2010
, “
A Numerical Study of Friction in Isothermal EHD Rolling-Sliding Sphere-Plane Contacts With Spinning
,”
ASME J. Tribol.
,
132
(
2
), p.
021501
.
21.
Roelands
,
C. J. A.
,
Winer
,
W. O.
, and
Wright
,
W. A.
,
1971
, “
Correlational Aspects of the Viscosity-Temperature-Pressure Relationship of Lubricating Oils (Dr In Dissertation at Technical University of Delft, 1966)
,”
ASME J. Lubr. Tech.
,
93
(
1
), pp.
209
210
.
22.
Dowson
,
D.
,
Higginson
,
G. R.
, and
Nielsen
,
K. W.
,
1978
, “
Elasto-Hydrodynamic Lubrication (International Series in Material, Science and Technology, Vol. 23)
,”
ASME J. Lubr. Tech.
,
100
(
3
), pp.
447
447
.
23.
Kalker
,
J. J.
,
1977
, “
Variational Principles of Contact Elastostatics
,”
IMA J. Appl. Math.
,
20
(
2
), pp.
199
219
.
24.
Wang
,
Z.
,
Yu
,
Q.
,
Shen
,
X.
, and
Chen
,
X.
,
2017
, “
A Simple Model for Scuffing Risk Evaluation of Point Contact Under Mixed Lubrication
,”
ASME J. Tribol.
,
140
(
3
), p.
031502
.
25.
Tevaarwerk
,
K. L. J. A. J. L.
,
1997
, “
Shear Behaviour of Elastohydrodynamic Oil Films
,”
Proc. R. Soc. London. A. Math. Phys. Sci.
,
356
(
1685
), pp.
215
236
.
26.
Ree
,
F. H.
,
Ree
,
T.
, and
Eyring
,
H.
,
1958
, “
Relaxation Theory of Transport Problems in Condensed Systems
,”
Ind. Eng. Chem.
,
50
(
7
), pp.
1036
1040
.
27.
Nelias
,
D.
,
Bercea
,
I.
, and
Paleu
,
V.
,
2008
, “
Prediction of Roller Skewing in Tapered Roller Bearings
,”
Tribol. Trans.
,
51
(
2
), pp.
128
139
.
28.
Wang
,
Z.
,
Chen
,
X.
,
Shen
,
X.
, and
Zhou
,
L.
,
2019
, “
Optimum Design of the Roller Profile Based on the Elastohydrodynamic Lubrication Model
,”
Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol.
,
233
(
10
), pp.
1594
1604
.
You do not currently have access to this content.