Abstract

One-dimensional local binary pattern (1D-LBP) identifies the running state of bearings by describing local textural features of vibration signals. However, the 1D-LBP algorithm is rather sensitive to noise and intrinsic periodic features of rotating machinery which is not included in consideration. This makes it difficult for the 1D-LBP algorithm to comprehensively dig fault information of bearings. To solve this problem, a new method has been brought forward by combining the intrinsic periodicity of rotating machinery and extraction of textural features. Before extraction of local features of signals, vibration signals are subjected to first-order difference operation to highlight local impact features of bearing failure. Meanwhile, to reduce the noise and further strengthen periodic features, differential signals are segmented by a complete period, and the signals after segmentation are subjected to cross-correlation successively to acquire the corresponding cross-correlation functions. Second, 1D-LBP is employed on cross-correlation functions (not raw signals) to extract local features and local textural signals (LTS) are obtained. Third, feature parameters and vectors have been built according to LTS and the running state of bearings has been described from the perspective of textural feature. Finally, according to the established feature vector and classification algorithm, running state of bearing was determined. A comparative analysis is given to the proposed method and other methods through public data sets and data from an experimental equipment of bearing. The results of comparative analysis indicate that with the two kinds of data sets, the identification rate of the proposed method for unknown samples is over 97% and it can judge the running state and the type of faults more precisely.

References

1.
Yang
,
Y.
,
Liu
,
H.
,
Han
,
L.
, and
Gao
,
P.
,
2023
, “
A Feature Extraction Method Using VMD and Improved Envelope Spectrum Entropy for Rolling Bearing Fault Diagnosis
,”
IEEE Sens. J.
,
23
(
4
), pp.
3848
3858
.
2.
Li
,
Z.
,
Wang
,
C.
,
Hu
,
X.
,
Xu
,
E.
, and
Yang
,
L.
,
2024
, “
Thermal-Mechanical Coupling Performance and Its Influence on Thermal Stiffness of Cylindrical Roller Bearings
,”
J. Aerosp. Eng.
,
37
(
4
), p.
5168
.
3.
Zhang
,
W.
,
Li
,
X.
, and
Ding
,
Q.
,
2019
, “
Deep Residual Learning-Based Fault Diagnosis Method for Rotating Machinery
,”
ISA Trans.
,
95
, pp.
295
305
.
4.
He
,
C.
,
Niu
,
P.
,
Yang
,
R.
,
Wang
,
C.
,
Li
,
Z.
, and
Li
,
H.
,
2019
, “
Incipient Rolling Element Bearing Weak Fault Feature Extraction Based on Adaptive Second Order Stochastic Resonance Incorporated by Mode Decomposition
,”
Measurement
,
145
, pp.
687
701
.
5.
Li
,
C.
,
Li
,
S.
,
Zhang
,
A.
,
He
,
Q.
,
Liao
,
Z.
, and
Hu
,
J.
,
2021
, “
Meta-Learning for Few-Shot Bearing Fault Diagnosis Under Complex Working Conditions
,”
Neurocomputing
,
439
, pp.
197
211
.
6.
Hou
,
B.
,
Wang
,
D.
,
Peng
,
Z.
, and
Tsui
,
K.-L.
,
2024
, “
Adaptive Fault Components Extraction by Using an Optimized Weights Spectrum Based Index for Machinery Fault Diagnosis
,”
IEEE Trans. Ind. Electron.
,
71
(
1
), pp.
985
995
.
7.
Li
,
X.
,
Su
,
H.
,
Xiang
,
L.
,
Yao
,
Q.
, and
Hu
,
A.
,
2024
, “
Transformer-Based Meta Learning Method for Bearing Fault Identification Under Multiple Small Sample Conditions
,”
Mech. Syst. Signal Process.
,
208
, p.
110967
.
8.
Zhang
,
S.
,
Ye
,
F.
,
Wang
,
B.
, and
Habetler
,
T.
,
2021
, “
Semi-Supervised Bearing Fault Diagnosis and Classification Using Variational Autoencoder-Based Deep Generative Models
,”
IEEE Sens. J.
,
21
(
5
), pp.
6476
6486
.
9.
Li
,
X. Y.
,
Yuan
,
P.
,
Wang
,
X. K.
,
Li
,
D. Y.
,
Xie
,
Z. J.
, and
Kong
,
X. W.
,
2023
, “
An Unsupervised Transfer Learning Bearing Fault Diagnosis Method Based on Depthwise Separable Convolution
,”
Meas. Sci. Technol.
,
34
(
9
), p.
acda55
.
10.
Ai
,
Y.-T.
,
Guan
,
J.-Y.
,
Fei
,
C.-W.
,
Tian
,
J.
, and
Zhang
,
F.-L.
,
2017
, “
Fusion Information Entropy Method of Rolling Bearing Fault Diagnosis Based on N-Dimensional Characteristic Parameter Distance
,”
Mech. Syst. Signal Process.
,
88
, pp.
123
136
.
11.
Zhao
,
Z.
,
Chen
,
F.
,
He
,
X.
,
Lan
,
P.
,
Chen
,
D.
,
Yin
,
X.
, and
Yang
,
J.
,
2024
, “
A Universal Hydraulic-Mechanical Diagnostic Framework Based on Feature Extraction of Abnormal On-Field Measurements: Application in Micro Pumped Storage System
,
Appl. Energy
,
357
, p.
122478
.
12.
Gong
,
W.-B.
,
Li
,
A.
,
Wu
,
Z.-H.
, and
Qin
,
F.-J.
,
2023
, “
Nonlinear Vibration Feature Extraction Based on Power Spectrum Envelope Adaptive Empirical Fourier Decomposition
,”
ISA Trans.
,
139
, pp.
660
674
.
13.
Ma
,
Y.
,
Tang
,
X.
,
Wang
,
Y.
, and
Hong
,
J.
,
2023
, “
Design of Nonlinear Metal Rubber Isolator Subjected to Random Vibration
,”
Mech. Syst. Signal Process.
,
197
, p.
110375
.
14.
Chang
,
Z.
,
Hou
,
L.
,
Lin
,
R.
,
Jin
,
Y.
, and
Chen
,
Y.
,
2023
, “
A Modified IHB Method for Nonlinear Dynamic and Thermal Coupling Analysis of Rotor-Bearing Systems
,”
Mech. Syst. Signal Process.
,
200
, p.
110586
.
15.
Zuo
,
Y.
,
Li
,
J.
,
Feng
,
K.
, and
Jiang
,
Z.
,
2024
, “
A 3-D Finite Element Modeling Method for Time-Varying Rotor-Support System Based on Rotating-Fixed Coordinates
,”
J. Sound Vib.
,
568
, p.
117977
.
16.
Li
,
Y.
,
Long
,
T.
,
Luo
,
Z.
,
Wen
,
C.
,
Zhu
,
Z.
,
Jin
,
L.
, and
Li
,
B.
,
2024
, “
Numerical and Experimental Investigations on Dynamic Behaviors of a Bolted Joint Rotor System With Pedestal Looseness
,”
J. Sound Vib.
,
571
, p.
118036
.
17.
Zhou
,
T.
, and
Zhu
,
C.
,
2024
, “
Output Feedback Dynamical Compensation Via Eigen Structure Assignment for Active Magnetic Bearings-Rigid Rotor Systems
,”
IEEE Trans. Ind. Electron.
,
71
(
2
), pp.
1328
1340
.
18.
Wang
,
W.
, and
Su
,
C.
,
2023
, “
Deep Learning-Based Detection and Condition Classification of Bridge Steel Bearings
,”
Automat. Constr.
,
156
, p.
105085
.
19.
Han
,
T.
,
Ding
,
X.
,
Hu
,
H.
,
Peng
,
Z.
,
Shi
,
X.
, and
Hu
,
S.
,
2023
, “
Health Monitoring of Triboelectric Self-Sensing Bearings Through Deep Learning
,”
Measurement
,
220
, p.
113330
.
20.
Li
,
J.
,
Liu
,
Y.
, and
Li
,
Q.
,
2022
, “
Intelligent Fault Diagnosis of Rolling Bearings Under Imbalanced Data Conditions Using Attention-Based Deep Learning Method
,”
Measurement
,
189
, p.
110500
.
21.
Zhao
,
D.
,
Cui
,
L.
, and
Liu
,
D. D.
,
2023
, “
Bearing Weak Fault Feature Extraction Under Time-Varying Speed Conditions Based on Frequency Matching Demodulation Transform
,”
IEEE-ASME Trans. Mech.
,
28
(
3
), pp.
1627
1637
.
22.
Yao
,
R.
,
Jiang
,
H.
,
Li
,
X.
, and
Cao
,
J.
,
2022
, “
Bearing Incipient Fault Feature Extraction Using Adaptive Period Matching Enhanced Sparse Representation
,”
Mech. Syst. Signal Process.
,
166
, p.
108467
.
23.
Kumar
,
A.
,
Gandhi
,
C. P.
,
Zhou
,
Y.
,
Tang
,
H.
, and
Xiang
,
J.
,
2020
, “
Fault Diagnosis of Rolling Element Bearing Based on Symmetric Cross Entropy of Neutrosophic Sets
,”
Measurement
,
152
(
C
), p.
107318
.
24.
Zhao
,
Z.
,
Sun
,
S.
,
Xu
,
W.
,
Shen
,
C.
, and
Wang
,
D.
,
2024
, “
Dynamics Modeling and Fault Diagnosis of Flexible Thin-Walled Elliptical Bearings in Harmonic Reducers
,”
Measurement
,
238
, p.
115378
.
25.
Zheng
,
X.
,
Feng
,
Z.
,
Lei
,
Z.
, and
Chen
,
L.
,
2024
, “
Few-Shot Learning Fault Diagnosis of Rolling Bearings Based on Siamese Network
,”
Meas. Sci. Technol.
,
35
(
9
), p.
095018
.
26.
Yang
,
M.
,
Zhang
,
K.
,
Sheng
,
Z.
,
Zhang
,
X.
, and
Xu
,
Y.
,
2024
, “
The Amplitude Modulation Bispectrum: A Weak Modulation Features Extracting Method for Bearing Fault Diagnosis
,”
Reliab. Eng. Syst. Safe.
,
250
, p.
110241
.
27.
Yang
,
S.
,
Liang
,
W.
, and
Yu
,
B.
,
2013
, “
Design of Vibration Signal’s Multi-channel Integer Period Synchronous Acquisition Card
,”
J. Vib. Meas. Diagn.
,
33
(
01
), pp.
23
28
. (in Chinese).
28.
Xia
,
P.
,
Xu
,
H.
,
Lei
,
M.
, and
Ma
,
Z.
,
2018
, “
An Improved Stochastic Resonance Method With Arbitrary Stable-State Matching in Underdamped Nonlinear Systems With a Periodic Potential for Incipient Bearing Fault Diagnosis
,”
Meas. Sci. Technol.
,
29
(
8
), p.
aac733
.
29.
Cheng
,
J.
,
Yang
,
Y.
,
Wu
,
X.
,
Wang
,
J.
,
Wu
,
Z.
, and
Cheng
,
J.
,
2022
, “
Symplectic Ramanujan Mode Decomposition and Its Application to Compound Fault Diagnosis of Bearings
,”
ISA Trans.
,
129
(
Part A
), pp.
495
503
.
30.
Zhang
,
T.
,
Qian
,
W.
,
Zhang
,
G.
,
Ye
,
F.
,
Gao
,
C.
, and
Zhao
,
C.
,
2016
, “
Parameter Estimation of MC-CDMA Signals Based on Modified Cyclic Autocorrelation
,”
Digit. Signal Process.
,
54
, pp.
46
53
.
31.
Kankar
,
P. K.
,
Sharma
,
S. C.
, and
Harsha
,
S. P.
,
2013
, “
Fault Diagnosis of Rolling Element Bearing Using Cyclic Autocorrelation and Wavelet Transform
,”
Neurocomputing
,
110
, pp.
9
17
.
32.
Ma
,
Z. Q.
,
Gu
,
C. J.
, and
Wang
,
J. D.
,
2017
, “
Research on Fault Diagnosis Method for Rolling Bearings Based on Cross-Correlation Function
,”
J. Basic Eng.
,
25
(
03
), pp.
646
655
.
33.
Cheng
,
L.
,
Li
,
S.
,
Lu
,
J. T.
, and
Yang
,
W. X.
,
2021
, “
Research on Multiple Cross Correlation Fusion Method of Fault Vibration Signal
,”
PHM-Nanjing
,
2021
, pp.
1
6
.
34.
Zhu
,
D.
,
Zhang
,
Y.
,
He
,
W.
, and
Zhu
,
Q. W.
,
2020
, “
Compound Faults Diagnosis of Rolling Element Bearing Using Adaptive CYCBD and Cross-Correlation Spectrum
,”
J. Vib. Shock
,
39
(
11
), pp.
116
122
.
35.
Kaya
,
Y.
,
Kuncan
,
M.
,
Kaplan
,
K.
,
Minaz
,
M. R.
, and
Ertunç
,
H. M.
,
2020
, “
Classification of Bearing Vibration Speeds Under 1D-LBP Based on Eight Local Directional Filters
,”
Soft Comput.
,
24
(
16
), pp.
12175
12186
.
36.
Cao
,
S.
,
Xu
,
F.
, and
Ma
,
T.
,
2021
, “
Fault Diagnosis of Rolling Bearing Based on Multiscale One-Dimensional Hybrid Binary Pattern
,”
Measurement
,
181
, p.
109552
.
37.
Ma
,
Z.
, and
Yu
,
M.
,
2024
, “
Adaptive Local Binarization Feature Mode Decomposition and Its Application in Combined Failure Identification of Rolling Bearings
,”
Meas. Sci. Technol.
,
35
(
10
), p.
106134
.
38.
Yu
,
M.
, and
Fang
,
M.
,
2024
, “
Combined Failure Identification of Intermediate Bearing in Aeroengine Based on Wavelet Transform, Second-Order Difference, and 1D-LBP
,”
Struct Control Health
.
39.
Kaya
,
Y.
,
Kuncan
,
M.
,
Akcan
,
E.
, and
Kaplan
,
K.
,
2024
, “
An Efficient Approach Based on a Novel 1D-LBP for the Detection of Bearing Failures With a Hybrid Deep Learning Method
,”
Appl. Soft Comput.
,
155
, p.
111438
.
40.
Yu
,
M.
,
Fang
,
M.
,
Ge
,
X.
, and
Qiao
,
B.
,
2022
, “
Feature Extraction of Mixed Faults of Intershaft Bearing Based on Homologous Information and Hjorth Parameters
,”
Measurement
,
196
, p.
111253
.
41.
Hemanta Kumar
,
B.
,
Chakraborty
,
C.
,
Pani
,
S. K.
, and
Ravi
,
V.
,
2023
, “
Feature and Subfeature Selection for Classification Using Correlation Coefficient and Fuzzy Model
,”
IEEE Trans. Eng. Manage.
,
70
(
5
), pp.
1655
1669
.
42.
Xie
,
F.
,
Liu
,
H.
,
Hu
,
W.
, and
Jiang
,
Y.
,
2023
, “
Early Fault Diagnosis of Rolling Bearing Based on Adaptive TQWT and Wavelet Packet Singular Spectral Entropy
,”
J. Railway Sci. Eng.
,
20
(
2
), pp.
714
722
.
43.
Soualhi
,
A.
,
Medjaher
,
K.
, and
Zerhouni
,
N.
,
2015
, “
Bearing Health Monitoring Based on Hilbert–Huang Transform, Support Vector Machine, and Regression
,”
IEEE Trans. Instrum. Meas.
,
64
(
1
), pp.
52
62
.
44.
[dataset] Bearing Data Center of the Case Western Reserve University, http://csegroups.Case.Edu/bearingdatacenter/pages/download-data-file, Accessed August 20, 2020
45.
Liu
,
J.
,
Quan
,
H.
,
Yu
,
X.
,
He
,
K.
, and
Li
,
Z.
,
2022
, “
Rolling Bearing Fault Diagnosis Based on Parameter Optimization VMD and Sample Entropy
,”
Acta Autom. Sin.
,
48
(
03
), pp.
808
819
.
46.
Wang
,
Q.
,
2005
, “Research on Fault Diagnoses of Rolling Bearing Based on the Energy Operator Demodulation Approach,” Doctoral dissertation,
Chongqing University
.
47.
Li
,
C.
,
Wu
,
Y.
,
Lin
,
H.
,
Li
,
J.
,
Zhang
,
F.
, and
Yang
,
Y.
,
2022
, “
ECG Denoising Method Based on an Improved VMD Algorithm
,”
IEEE Sens. J.
,
22
(
23
), pp.
22725
22733
.
You do not currently have access to this content.