Abstract

Under transverse cyclic loading, slip will occur on the contact surfaces in a threaded connection, causing rotational loosening of the connection. It is necessary to detect and analyze the loosening behavior of threaded connections caused by slippage. In this article, a self-driven sensor based on the principles of triboelectric nanogenerators (TENGs) was used to monitor the rotational looseness of a tight threaded stud connection subjected to transverse cyclic loads. The finite element simulation was conducted on the contact slip in the stud connection in the experiment under transverse cyclic loading to reveal the loosening phenomenon of threaded connections caused by local slip propagation with the increase of load cycles. Under a certain preload, only when the amplitude of the lateral cyclic load does not exceed a critical value, will the thread contact surface not experience local slip propagation. Therefore, a local slip influence coefficient was proposed for calculating the critical transverse cyclic load amplitude, and its influencing factors were discussed. This study provides a new approach to the anti-loosening design of threaded connections.

References

1.
Gong
,
H.
,
Liu
,
J.
, and
Ding
,
X.
,
2019
, “
Study on the Mechanism of Preload Decrease of Bolted Joints Subjected to Transversal Vibration Loading
,”
Proc. Inst. Mech. Eng. Part B J. Eng. Manuf.
,
233
(
12
), pp.
2320
2329
.
2.
Jiang
,
X.
,
Zhu
,
Y.
,
Hong
,
J.
,
Chen
,
X.
, and
Zhang
,
Y.
,
2013
, “
Investigation Into the Loosening Mechanism of Bolt in Curvic Coupling Subjected to Transverse Loading
,”
Eng. Fail. Anal.
,
32
, pp.
360
373
.
3.
Karlsen
,
Ø
, and
Lemu
,
H. G.
,
2022
, “
Comparative Study on Loosening of Anti-Loosening Bolt and Standard Bolt System
,”
Eng. Fail. Anal.
,
140
, p.
106590
.
4.
Cui
,
C.
,
Zhang
,
Q.
,
Zhang
,
D.
,
Lao
,
W.
,
Wu
,
L.
, and
Jiang
,
Z.
,
2024
, “
Monitoring and Detection of Steel Bridge Diseases: A Review
,”
J. Traffic Transp. Eng.
,
11
(
2
), pp.
188
208
.
5.
Sah
,
S. M.
,
Thomsen
,
J. J.
,
Brøns
,
M.
,
Fidlin
,
A.
, and
Tcherniak
,
D.
,
2018
, “
Estimating Bolt Tightness Using Transverse Natural Frequencies
,”
J. Sound Vib.
,
431
, pp.
137
149
.
6.
Huang
,
J.
,
Liu
,
J.
,
Gong
,
H.
, and
Deng
,
X.
,
2022
, “
A Comprehensive Review of Loosening Detection Methods for Threaded Fasteners
,”
Mech. Syst. Signal Process.
,
168
, p.
108652
.
7.
Nikravesh
,
S. M. Y.
, and
Goudarzi
,
M.
,
2017
, “
A Review Paper on Looseness Detection Methods in Bolted Structures
,”
Lat. Am. J. Solids Strut.
,
14
(
12
), pp.
2153
2176
.
8.
Khomenko
,
A.
,
Koricho
,
E. G.
,
Haq
,
M.
, and
Cloud
,
G. L.
,
2015
, “
Bolt Tension Monitoring With Reusable Fiber Bragg-Grating Sensors
,”
J. Strain Anal. Eng. Des.
,
51
(
2
), pp.
101
108
.
9.
Yang
,
W. S.
,
Chiang
,
C. C.
, and
Hsu
,
H. C.
,
2023
, “
Monitoring Torque in Bolts Using an Embedded Fiber Bragg Grating Sensor
,”
Optik
,
291
, p.
171294
.
10.
Jiang
,
X.
,
Ma
,
K.
,
Lu
,
S.
,
Zhang
,
L.
,
Wang
,
Z.
,
Guo
,
Y.
,
Wang
,
X.
,
Zhao
,
Z.
,
Qu
,
X.
, and
Lu
,
Y.
,
2021
, “
Structure Bolt Tightening Force and Loosening Monitoring by Conductive MXene/FPC Pressure Sensor With High Sensitivity and Wide Sensing Range
,”
Sens. Actuators, A
,
331
, p.
113005
.
11.
Na
,
W. S.
,
2021
, “
Bolt Loosening Detection Using Impedance Based non-Destructive Method and Probabilistic Neural Network Technique With Minimal Training Data
,”
Eng. Strut.
,
226
, p.
111228
.
12.
Wang
,
L.
,
Yuan
,
B.
,
Xu
,
Z.
, and
Sun
,
Q.
,
2022
, “
Synchronous Detection of Bolts Looseness Position and Degree Based on Fusing Electro-Mechanical Impedance
,”
Mech. Syst. Signal Process.
,
174
, p.
109068
.
13.
Gao
,
X.
,
Wang
,
W.
, and
Du
,
J.
,
2024
, “
Bolt Load Looseness Detection for Slip-Critical Blind Bolt Based on Wavelet Analysis and Deep Learning
,”
Structures
,
64
, p.
106521
.
14.
Liu
,
P.
,
Wang
,
X.
,
Wang
,
Y.
,
Zhu
,
J.
, and
Ji
,
X.
,
2024
, “
Research on Percussion-Based Bolt Looseness Monitoring Under Noise Interference and Insufficient Samples
,”
Mech. Syst. Signal Process.
,
208
, p.
111013
.
15.
Yuan
,
R.
,
Lv
,
Y.
,
Kong
,
Q.
, and
Song
,
G.
,
2019
, “
Percussion-Based Bolt Looseness Monitoring Using Intrinsic Multiscale Entropy Analysis and BP Neural Network
,”
Smart Mater. Struct.
,
28
(
12
), p.
125001
.
16.
Kong
,
X.
, and
Li
,
J.
,
2018
, “
Image Registration-Based Bolt Loosening Detection of Steel Joints
,”
Sensors
,
18
(
4
), p.
1000
.
17.
Tong
,
T.
,
Hua
,
J.
,
Gao
,
F.
, and
Lin
,
J.
,
2023
, “
Identification of Bolt State in Lap Joint Based on Propagation Model and Imaging Methods of Lamb Waves
,”
Mech. Syst. Signal Process.
,
200
, p.
110569
.
18.
Jing
,
Q.
,
Xie
,
Y.
,
Zhu
,
G.
,
Han
,
R. P. S.
, and
Wang
,
Z. L.
,
2015
, “
Self-Powered Thin-Film Motion Vector Sensor
,”
Nat. Commun.
,
6
(
1
), p.
8031
.
19.
Jiao
,
H.
,
Lin
,
X.
,
Xiong
,
Y.
,
Han
,
J.
,
Liu
,
Y.
,
Yang
,
J.
,
Wu
,
S.
,
Jiang
,
T.
,
Wang
,
Z. L.
, and
Sun
,
Q.
,
2024
, “
Thermal Insulating Textile Based Triboelectric Nanogenerator for Outdoor Wearable Sensing and Interaction
,”
Nano Energy
,
120
, p.
109134
.
20.
Chen
,
J.
, and
Wang
,
Z. L.
,
2017
, “
Reviving Vibration Energy Harvesting and Self-Powered Sensing by a Triboelectric Nanogenerator
,”
Joule
,
1
(
3
), pp.
480
521
.
21.
Lei
,
W.
,
Lu
,
S.
,
Wang
,
Q.
,
Yuan
,
P.
, and
Yu
,
H.
,
2022
, “
A Method of Measuring Weak-Charge of Self-Powered Sensors Based on Triboelectric Nanogenerator
,”
Nano Energy
,
95
, p.
106997
.
22.
Han
,
Q.
,
Ding
,
Z.
,
Qin
,
Z.
,
Wang
,
T.
,
Xu
,
X.
, and
Chu
,
F.
,
2020
, “
A Triboelectric Rolling Ball Bearing With Self-Powering and Self-Sensing Capabilities
,”
Nano Energy
,
67
, p.
104277
.
23.
Tanaka
,
M.
,
Hongo
,
K.
, and
Asaba
,
E.
,
1982
, “
Finite Element Analysis of the Threaded Connections Subjected to External Loads
,”
Bull. JSME
,
25
(
200
), pp.
291
298
.
24.
Yamamoto
,
A.
, and
Kasei
,
S.
,
1984
, “
A Solution for Self-Loosening Mechanism of Threaded Fasteners Under Transverse Vibration
,”
Bull. Jpn. Soc. Precis. Eng.
,
18
(
3
), pp.
261
266
.
25.
Jiang
,
Y.
,
Zhang
,
M.
, and
Lee
,
C. H.
,
2003
, “
A Study of Early Stage Self-Loosening of Bolted Joints
,”
ASME J. Mech. Des.
,
125
(
3
), pp.
518
526
.
26.
Jiang
,
Y.
,
Zhang
,
M.
,
Park
,
T. W.
, and
Lee
,
C. H.
,
2004
, “
An Experimental Study of Self-Loosening of Bolted Joints
,”
ASME J. Mech. Des.
,
126
(
5
), pp.
925
931
.
27.
Saha
,
S.
,
Srimani
,
S.
,
Hajra
,
S.
,
Bhattacharya
,
A.
, and
Das
,
S.
,
2007
, “
On the Anti-Loosening Property of Different Fasteners
,”
Proceedings of the 13th National Conference on Mechanisms and Machines (NaCoMM07), IISc
,
Bangalore, India
,
Dec. 12–13
, ASME Paper No. NaCoMM-2007-105, pp.
229
232
.
28.
Lin
,
Q.
,
Zhao
,
Y.
,
Sun
,
Q.
, and
Chen
,
K.
,
2022
, “
Reliability Evaluation Method of Anti-Loosening Performance of Bolted Joints
,”
Mech. Syst. Signal Process.
,
162
, pp.
108067
.
29.
Fan
,
J.
,
Li
,
H.
,
Zhang
,
Y.
,
Li
,
T.
,
Liu
,
J.
,
Peng
,
J.
, and
Zhu
,
M.
,
2023
, “
Failure Behaviour of Bolted Structures Under Cyclic Transverse Displacement
,”
Tribol. Int.
,
178
, pp.
108030
.
30.
Gong
,
H.
,
Liu
,
J.
, and
Ding
,
X.
,
2021
, “
Study on Local Slippage Accumulation Between Thread Contact Surfaces and Novel Anti-Loosening Thread Designs Under Transversal Vibration
,”
Tribol. Int.
,
153
, pp.
106558
.
31.
Gong
,
H.
,
Liu
,
J.
, and
Feng
,
H.
,
2022
, “
Research Review on Loosening Mechanisms and Anti-Loosening Methods of Threaded Fasteners
,”
J. Mech. Eng.
,
58
(
10
), pp.
326
347 + 360
.
32.
Junker
,
G. H.
,
1969
, “
New Criteria for Self-Loosening of Fasteners Under Vibration
,”
SAE Trans.
,
78
, pp.
314
335
.
33.
Junker
,
G. H.
,
1972
, “
Criteria for Self-Loosening of Fasteners Under Vibration
,”
Aircr. Eng.
,
44
(
10
), pp.
14
16
.
34.
Pai
,
N. G.
, and
Hess
,
D. P.
,
2002
, “
Three-Dimensional Finite Element Analysis of Threaded Fastener Loosening Due to Dynamic Shear Load
,”
Eng. Fail. Anal.
,
9
(
4
), pp.
383
402
.
35.
Pai
,
N. G.
, and
Hess
,
D. P.
,
2002
, “
Experimental Study of Loosening of Threaded Fasteners Due to Dynamic Shear Loads
,”
J. Sound Vib.
,
253
(
3
), pp.
585
602
.
36.
Izumi
,
S.
,
Yokoyama
,
T.
,
Iwasaki
,
A.
, and
Sakai
,
S.
,
2005
, “
Three-Dimensional Finite Element Analysis of Tightening and Loosening Mechanism of Threaded Fastener
,”
Eng. Fail. Anal.
,
12
(
4
), pp.
604
615
.
37.
Izumi
,
S.
,
Kimura
,
M.
, and
Sakai
,
S.
,
2007
, “
Small Loosening of Bolt-nut Fastener Due to Micro Bearing-Surface Slip: A Finite Element Method Study
,”
J. Solid Mech. Mater. Eng.
,
1
(
11
), pp.
1374
1384
.
38.
Zhang
,
M.
,
Jiang
,
Y.
, and
Lee
,
C. H.
,
2007
, “
Finite Element Modeling of Self-Loosening of Bolted Joints
,”
ASME J. Mech. Des.
,
129
(
2
), pp.
218
226
.
39.
Dinger
,
G.
, and
Friedrich
,
C.
,
2011
, “
Avoiding Self-Loosening Failure of Bolted Joints With Numerical Assessment of Local Contact State
,”
Eng. Fail. Anal.
,
18
(
8
), pp.
2188
2200
.
40.
Chen
,
Y.
,
Gao
,
Q.
, and
Guan
,
Z.
,
2017
, “
Self-Loosening Failure Analysis of Bolt Joints Under Vibration Considering the Tightening Process
,”
Shock Vib.
,
2017
, pp.
1
15
.
41.
Gong
,
H.
, and
Liu
,
J.
,
2018
, “
Some Factors Affecting the Loosening Failure of Bolted Joints Under Vibration Using Finite Element Analysis
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
232
(
21
), pp.
3942
3953
.
42.
Wang
,
K.
,
Yan
,
M.
,
Su
,
D.
, and
Sun
,
Z.
,
2023
, “
Bolt Loosening Characteristics Based on Change of Slip-Adhesion Contact State Under Shear Load
,”
J. Aerosp. Power
,
38
(
5
), pp.
453
461
.
43.
Zhang
,
M.
,
Lu
,
L.
,
Tang
,
M.
, and
Zeng
,
D.
,
2018
, “
Research on Numerical Calculation Method of Critical Load for Bolt Loosening Under Transverse Loading
,”
J. Mech. Eng.
,
54
(
5
), pp.
173
178
.
44.
Zhang
,
J.
,
Li
,
W.
,
Feng
,
J.
, and
Liao
,
R.
,
2024
, “
Critical Load Determination for Preventing Rotational Loosening in Bolted Joints Under Dynamic Transverse Loads
,”
Eng. Fail. Anal.
,
160
, pp.
108217
.
45.
Niu
,
S.
,
Wang
,
S.
,
Lin
,
L.
,
Liu
,
Y.
,
Zhou
,
Y. S.
,
Hu
,
Y.
, and
Wang
,
Z. L.
,
2013
, “
Theoretical Study of Contact-Mode Triboelectric Nanogenerators as an Effective Power Source
,”
Energy Environ. Sci.
,
6
(
12
), pp.
3576
3583
.
46.
Heinstein
,
M. W.
,
Mello
,
F. J.
,
Attaway
,
S. W.
, and
Laursen
,
T. A.
,
2000
, “
Contact-Impact Modeling in Explicit Transient Dynamics
,”
Comput. Meth. Appl. Mech. Eng.
,
187
(
3–4
), pp.
621
640
.
47.
Spagnoli
,
A.
,
Beccarelli
,
G.
,
Terzano
,
M.
, and
Barber
,
J. R.
,
2021
, “
A Numerical Study on Frictional Shakedown in Large-Scale Three-Dimensional Conforming Elastic Contacts
,”
Int. J. Solids Struct.
,
217–218
, pp.
1
14
.
You do not currently have access to this content.