The mechanisms influencing film cooling effectiveness on a flat plate in high free-stream turbulence using a single row of 30 deg slant-hole injectors are examined. The primary area of focus is the area within 40 diameters downstream of injection. Of interest are blowing ratios for optimum film cooling effectiveness within 10 diameters downstream of injection, and the decay of film cooling effectiveness down the plate. Film cooling flow Reynolds numbers. Re, from 24,700 to 86,600 and free-stream turbulence intensities from 14 to 17 percent were examined. Changes in Reynolds number or free-stream turbulence broadened and increased the blowing ratios for optimum film cooling effectiveness. In comparison with tests conducted at 0.5 percent free-stream turbulence, higher free-stream turbulence causes a faster decay in film cooling effectiveness, or a reduction in the effective cooling length, and a reduction of the level of cooling effectiveness at the higher Reynolds numbers.

This content is only available via PDF.
You do not currently have access to this content.