This study investigates the performance of several existing turbulence models for the prediction of film coolant jet in a crossflow. Two-equation models employing k–ε and k–ω closures, broadly categorized as high-Reynolds-number formulations, low-Reynolds-number formulations, DNS-based formulation, and nonlinear formulations have been used to simulate the flow. In all, seven different turbulence models have been tested. Predictions with different models have been compared with experimental results of Ajersch et al. (1995) and with each other to critically evaluate model performance. The assessment of models has been done keeping in mind that all models have been formulated for wall-bounded flows and may not be well suited for the jet-in-a-crossflow situation. Close agreement with experimental results was obtained at the jet exit and far downstream of the jet injection region, but all models typically overpredicted the magnitude of the velocities in the wake region behind the jet. The present study clearly underscores the deficiencies of the current models, and demonstrates the need for improvements. [S0889-504X(00)03002-6]

1.
Fric
,
T. F.
, and
Roshko
,
A.
,
1994
, “
Vortical Structures in the Wake of a Transverse Jet
,”
J. Fluid Mech.
,
279
, pp.
1
47
.
2.
Lee
,
S. W.
,
Lee
,
J. S.
, and
Ro
,
S. T.
,
1994
, “
Experimental Study on the Flow Characteristics of Streamwise Inclined Jets in Crossflow on Flat Plate
,”
ASME J. Turbomach.
,
116
, pp.
97
105
.
3.
Kelso
,
R. M.
,
Lim
,
T. T.
, and
Perry
,
A. E.
,
1996
, “
An Experimental Study of Round Jets in Crossflow
,”
J. Fluid Mech.
,
306
, pp.
111
144
.
4.
Garg
,
V. K.
, and
Gaugler
,
R. E.
,
1997
, “
Effect of Coolant Temperature and Mass Flow on Film Cooling of Turbine Blade
,”
Int. J. Heat Mass Transf.
,
40
, No.
2
, pp.
435
445
.
5.
Kim
,
S. W.
, and
Benson
,
T. J.
,
1993
, “
Fluid Flow of a Row of Jets in Crossflow—A Numerical Study
,”
AIAA J.
,
31
, No.
5
, pp.
806
811
.
6.
Walters
,
D. K.
, and
Leylek
,
J. H.
,
2000
, “
A Detailed Analysis of Film-Cooling Physics: Part I—Streamwise Injection With Cylindrical Holes
,”
ASME J. Turbomach.
,
122
, pp.
102
112
.
7.
Demuren
,
D. K.
,
Rodi
,
W.
, and
Schonung
,
B.
,
1986
, “
Systematic Study of Film Cooling With a Three-Dimensional Calculation Procedure
,”
ASME J. Turbomach.
,
108
, pp.
124
130
.
8.
Demuren
,
A. O.
,
1993
, “
Characteristics of Three-Dimensional Turbulent Jets in Crossflow
,”
Int. J. Eng. Sci.
,
31
, No.
6
, pp.
899
913
.
9.
Clauss, R. W., and Vanka, S. P., 1990, “Multigrid Calculations of Jet in Crossflow,” AIAA Paper No. 90-0444.
10.
Findlay, M. J., He, P., Salcudean, M., and Gartshore, L. S., 1996, “A Row of Streamwise-Inclined Jets in Crossflow: Measurements and Calculations,” ASME Paper No. 96-GT-167.
11.
Ajersch
,
P.
,
Ketler
,
S.
,
Zhou
,
J. M.
,
Gartshore
,
I.
, and
Salcudean
,
M.
,
1997
, “
Multiple Jets in a Crossflow: Detailed Measurements and Numerical Simulations
,”
ASME J. Turbomach.
,
119
, pp.
330
342
.
12.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1974
, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
,
3
, No.
2
, pp.
269
289
.
13.
Patel
,
V. C.
,
Rodi
,
W.
, and
Scheuerer
,
G.
,
1985
, “
Turbulence Models for Near-Wall and Low-Reynolds Number Flows: A Review
,”
AIAA J.
,
33
, pp.
1308
1318
.
14.
Launder
,
B. E.
, and
Sharma
,
B. I.
,
1974
, “
Application of the Energy Dissipation Model of Turbulence to the Calculation of Flow Near a Spinning Disc
,”
Lett. Heat Mass Transfer
,
1
, pp.
131
138
.
15.
Lam
,
C. K. G.
, and
Bremhorst
,
K. A.
,
1981
, “
Modified Form of the k–ε Model for Predicting Wall Turbulence
,”
ASME J. Fluids Eng.
,
103
,
456
460
.
16.
Wilcox, D. C., and Traci, R. M., 1976, “A Complete Model of Turbulence,” AIAA Paper No. 76–351.
17.
Rodi
,
W.
, and
Mansour
,
N. N.
,
1993
, “
Low Reynolds Number k–ε Modelling With the Aid of Direct Simulation Data
,”
J. Fluid Mech.
,
250
, pp.
509
529
.
18.
Mayong
,
H. K.
, and
Kasagi
,
N.
,
1990
, “
Prediction of Anisotropy of the Near-Wall Turbulence With an Anisotropic Low-Reynolds-Number k–ε Turbulence Model
,”
ASME J. Fluids Eng.
,
112
, pp.
521
524
.
19.
Mayong, H. K., 1988, “Fundamental Studies on Two-Equation Turbulence Models for Numerical Prediction of Wall-Bounded Shear Flows and Heat Transfer,” Dr. Eng. Thesis, The University of Tokyo.
20.
Speziale
,
C. G.
,
1987
, “
On Nonlinear k–l and k–ε Models of Turbulence
,”
J. Fluid Mech.
,
178
, pp.
459
475
.
21.
Patankar
,
S. V.
,
1980
, “
Generation of Finite Difference Formulas on Arbitrarily Spaced Grids
,”
Math. Comput.
,
31
, No.
184
, pp.
699
706
.
22.
Fornberg
,
B. G.
,
1988
, “
Generation of Finite Difference Formulas on Arbitrarily Spaced Grids
,”
Math. Comput.
,
31
, No.
184
, pp.
699
706
.
23.
Andreopoulos
,
J.
, and
Rodi
,
W.
,
1984
, “
Experimental Investigation of Jets in a Crossflow
,”
J. Fluid Mech.
,
138
, pp.
93
127
.
24.
Muldoon
,
F.
, and
Acharya
,
S.
,
1999
, “
Dynamics of Large-Scale Structures for Jets in a Crossflow
,”
ASME J. Turbomach.
,
121
, pp.
577
488
.
25.
Sharma, C., and Acharya, S., 1998, “Direct Numerical Simulation of a Coolant Jet in a Periodic Crossflow,” Heat Transfer in Turbomachinery, ASME HTD-Vol. 361-3/PID-Vol. 3, p. 363.
You do not currently have access to this content.