Airfoil leading-edge surfaces in state-of-the-art gas turbines, being exposed to very high gas temperatures, are often life-limiting locations and require complex cooling schemes for robust designs. A combination of convection and film cooling is used in conventional designs to maintain leading-edge metal temperatures at levels consistent with airfoil life requirements. Compatible with the external contour of the airfoil at the leading edge, the leading-edge cooling cavities often have complex cross-sectional shapes. Furthermore, to enhance the heat transfer coefficient in these cavities, they are often roughened on three walls with ribs of different geometries. The cooling flow for these geometries usually enters the cavity from the airfoil root and flows radially to the airfoil tip or, in the more advanced designs, enters the leading edge cavity from the adjacent cavity through a series of crossover holes in the wall separating the two cavities. In the latter case, the crossover jets impinge on a smooth leading-edge wall and exit through the showerhead film holes, gill film holes on the pressure and suction sides, and, in some cases, form a crossflow in the leading-edge cavity, which is ejected through the airfoil tip hole. The main objective of this investigation was to study the effects that film holes on the target surface have on the impingement heat transfer coefficient. Available data in the open literature are mostly for impingement on a flat smooth surface with no representation of the film holes. This investigation involved two new features used in airfoil leading-edge cooling, those being a curved and roughened target surface in conjunction with leading-edge row of film holes. Results of the crossover jets impinging on these leading-edge surface geometries with no film holes were reported by these authors previously. This paper reports experimental results of crossover jets impinging on those same geometries in the presence of film holes. The investigated surface geometries were smooth, roughened with large and small conical bumps as well as tapered radial ribs. A range of flow arrangements and jet Reynolds numbers were investigated, and the results were compared to those of the previous study where no film holes were present. It was concluded that the presence of leading-edge film holes along the leading edge enhances the internal impingement heat transfer coefficients significantly. The smaller conical bump geometry in this investigation produced impingement heat transfer coefficients up to 35 percent higher than those of the smooth target surface. When the contribution of the increased area in the overall heat transfer is taken into consideration, this same geometry for all flow cases as well as jet impingement distances provides an increase in the heat removal from the target surface by as much as 95 percent when compared with the smooth target surface.
Skip Nav Destination
Article navigation
October 2001
Technical Papers
An Experimental Study of Impingement on Roughened Airfoil Leading-Edge Walls With Film Holes
M. E. Taslim,
M. E. Taslim
Mechanical, Industrial, and Manufacturing Engineering, Northeastern University, Boston, MA 02115
Search for other works by this author on:
Y. Pan,
Y. Pan
Mechanical, Industrial, and Manufacturing Engineering, Northeastern University, Boston, MA 02115
Search for other works by this author on:
S. D. Spring
S. D. Spring
GE Aircraft Engines, Lynn, MA 02010
Search for other works by this author on:
M. E. Taslim
Mechanical, Industrial, and Manufacturing Engineering, Northeastern University, Boston, MA 02115
Y. Pan
Mechanical, Industrial, and Manufacturing Engineering, Northeastern University, Boston, MA 02115
S. D. Spring
GE Aircraft Engines, Lynn, MA 02010
Contributed by the International Gas Turbine Institute and presented at the 46th International Gas Turbine and Aeroengine Congress and Exhibition, New Orleans, Louisiana, June 4–7, 2001. Manuscript received by the International Gas Turbine institute February 2001. Paper No. 2001-GT-152. Review Chair: R. Natole.
J. Turbomach. Oct 2001, 123(4): 766-773 (8 pages)
Published Online: February 1, 2001
Article history
Received:
February 1, 2001
Citation
Taslim , M. E., Pan, Y., and Spring, S. D. (February 1, 2001). "An Experimental Study of Impingement on Roughened Airfoil Leading-Edge Walls With Film Holes ." ASME. J. Turbomach. October 2001; 123(4): 766–773. https://doi.org/10.1115/1.1401035
Download citation file:
Get Email Alerts
Related Articles
An Experimental Evaluation of Advanced Leading Edge Impingement Cooling Concepts
J. Turbomach (January,2001)
Experimental and Numerical Investigation of Impingement on a Rib-Roughened Leading-Edge Wall
J. Turbomach (October,2003)
Experimental and Numerical Cross-Over Jet Impingement in an Airfoil Trailing-Edge Cooling Channel
J. Turbomach (October,2011)
Novel Jet Impingement Cooling Geometry for Combustor Liner Backside Cooling
J. Thermal Sci. Eng. Appl (June,2009)
Related Proceedings Papers
Related Chapters
Control and Operational Performance
Closed-Cycle Gas Turbines: Operating Experience and Future Potential
Thermal Interface Resistance
Thermal Management of Microelectronic Equipment
Thermal Design Guide of Liquid Cooled Systems
Thermal Design of Liquid Cooled Microelectronic Equipment