Airfoil leading-edge surfaces in state-of-the-art gas turbines, being exposed to very high gas temperatures, are often life-limiting locations and require complex cooling schemes for robust designs. A combination of convection and film cooling is used in conventional designs to maintain leading-edge metal temperatures at levels consistent with airfoil life requirements. Compatible with the external contour of the airfoil at the leading edge, the leading-edge cooling cavities often have complex cross-sectional shapes. Furthermore, to enhance the heat transfer coefficient in these cavities, they are often roughened on three walls with ribs of different geometries. The cooling flow for these geometries usually enters the cavity from the airfoil root and flows radially to the airfoil tip or, in the more advanced designs, enters the leading edge cavity from the adjacent cavity through a series of crossover holes in the wall separating the two cavities. In the latter case, the crossover jets impinge on a smooth leading-edge wall and exit through the showerhead film holes, gill film holes on the pressure and suction sides, and, in some cases, form a crossflow in the leading-edge cavity, which is ejected through the airfoil tip hole. The main objective of this investigation was to study the effects that film holes on the target surface have on the impingement heat transfer coefficient. Available data in the open literature are mostly for impingement on a flat smooth surface with no representation of the film holes. This investigation involved two new features used in airfoil leading-edge cooling, those being a curved and roughened target surface in conjunction with leading-edge row of film holes. Results of the crossover jets impinging on these leading-edge surface geometries with no film holes were reported by these authors previously. This paper reports experimental results of crossover jets impinging on those same geometries in the presence of film holes. The investigated surface geometries were smooth, roughened with large and small conical bumps as well as tapered radial ribs. A range of flow arrangements and jet Reynolds numbers were investigated, and the results were compared to those of the previous study where no film holes were present. It was concluded that the presence of leading-edge film holes along the leading edge enhances the internal impingement heat transfer coefficients significantly. The smaller conical bump geometry in this investigation produced impingement heat transfer coefficients up to 35 percent higher than those of the smooth target surface. When the contribution of the increased area in the overall heat transfer is taken into consideration, this same geometry for all flow cases as well as jet impingement distances Z/djet provides an increase in the heat removal from the target surface by as much as 95 percent when compared with the smooth target surface.

1.
Burggraf, F., 1970, “Experimental Heat Transfer and Pressure Drop With Two Dimensional Turbulence Promoters Applied to Two Opposite Walls of a Square Tube,” Augmentation of Convective Heat and Mass Transfer, A. E. Bergles and R. L. Webb, eds., ASME pp. 70–79.
2.
Chandra
,
P. R.
, and
Han
,
J. C.
,
1989
, “
Pressure Drop and Mass Transfer in Two-Pass Ribbed Channels
,”
J. Thermophys.
,
3
, No.
3
, pp.
315
319
.
3.
El-Husayni
,
H. A.
,
Taslim
,
M. E.
, and
Kercher
,
D. M.
,
1994
, “
An Experimental Investigation of Heat Transfer Coefficients in a Spanwise Rotating Channel With Two Opposite Rib-Roughened Walls
,”
ASME J. Turbomach.
,
113
, pp.
75
82
.
4.
Han
,
J. C.
,
1984
, “
Heat Transfer and Friction in Channels With Two Opposite Rib-Roughened Walls
,”
ASME J. Heat Transfer
,
106
, No.
4
, pp.
774
781
.
5.
Han
,
J. C.
,
Glicksman
,
L. R.
, and
Rohsenow
,
W. M.
,
1978
, “
An Investigation of Heat Transfer and Friction for Rib Roughened Surfaces
,”
Int. J. Heat Mass Transf.
,
21
, pp.
1143
1156
.
6.
Han
,
J. C.
,
Park
,
J. S.
, and
Lei
,
C. K.
,
1985
, “
Heat Transfer Enhancement in Channels With Turbulence Promoters
,”
ASME J. Eng. Gas Turbines Power
,
107
, No.
1
, pp.
628
635
.
7.
Han
,
J. C.
,
Zhang
,
Y. M.
, and
Lee
,
C. P.
,
1992
, “
Influence of Surface Heat Flux Ratio on Heat Transfer Augmentation in Square Channels With Parallel, Crossed, and V-Shaped Angled Ribs
,”
ASME J. Turbomach.
,
114
, pp.
872
880
.
8.
Metzger, D. E., Vedula, R. P., and Breen, D. D., 1987, “The Effect of Rib Angle and Length on Convection Heat Transfer in Rib-Roughened Triangular Ducts,” Proc. ASME–JSME Thermal Engineering Joint Conference, Vol. 3, pp. 327–333.
9.
Metzger, D. E., Chyu, M. K., and Bunker, R. S., 1988, “The Contribution of On-Rib Heat Transfer Coefficients to Total Heat Transfer From Rib-Roughened Surfaces,” Transport Phenomena in Rotating Machinery, J. H. Kim, ed., Hemisphere Publishing Co.
10.
Metzger, D. E., Fan, C. S., and Yu, Y., 1990, “Effects of Rib Angle and Orientation on Local Heat Transfer in Square Channels With Angled Roughness Ribs,” Compact Heat Exchangers: A Festschrift for A. L. London, Hemisphere Publishing Co., pp. 151–167.
11.
Taslim, M. E., and Spring, S. D., 1988, “An Experimental Investigation of Heat Transfer Coefficients and Friction Factors in Passages of Different Aspect Ratios Roughened With 45 deg Turbulators,” Proc. ASME National Heat Conference, Houston, TX.
12.
Taslim, M. E., and Spring, S. D., 1988, “Experimental Heat Transfer and Friction Factors in Turbulated Cooling Passages of Different Aspect Ratios, Where Turbulators Are Staggered,” Paper No. AIAA-88-3014.
13.
Taslim, M. E., and Spring, S. D., 1991, “An Experimental Investigation Into the Effects Turbulator Profile and Spacing Have on Heat Transfer Coefficients and Friction Factors in Small Cooled Turbine Airfoils,” Paper No. AIAA-91-2033.
14.
Taslim
,
M. E.
,
Bondi
,
L. A.
, and
Kercher
,
D. M.
,
1991
, “
An Experimental Investigation of Heat Transfer in an Orthogonally Rotating Channel Roughened 45 Deg Criss-Cross Ribs on Two Opposite Walls
,”
ASME J. Turbomach.
,
113
, pp.
346
353
.
15.
Taslim
,
M. E.
,
Rahman
,
A.
, and
Spring
,
S. D.
,
1991
, “
An Experimental Evaluation of Heat Transfer Coefficients in a Spanwise Rotating Channel With Two Opposite Rib-Roughened Walls
,”
ASME J. Turbomach.
,
113
, pp.
75
82
.
16.
Taslim
,
M. E.
,
Setayeshgar
,
L.
, and
Spring
,
S. D.
,
2001
, “
An Experimental Investigation of Advanced Leading Edge Impingement Cooling Concepts
,”
ASME J. Turbomach.
,
123
, pp.
1
7
.
17.
Webb
,
R. L.
,
Eckert
,
E. R. G.
, and
Goldstein
,
R. J.
,
1971
, “
Heat Transfer and Friction in Tubes With Repeated-Rib-Roughness
,”
Int. J. Heat Mass Transf.
,
14
, pp.
601
617
.
18.
Zhang
,
Y. M.
,
Gu
,
W. Z.
, and
Han
,
J. C.
,
1994
, “
Heat Transfer and Friction in Rectangular Channels With Ribbed or Ribbed-Grooved Walls
,”
ASME J. Heat Transfer
,
116
, No.
1
, pp.
58
65
.
19.
Chupp
,
R. E.
,
Helms
,
H. E.
,
McFadden
,
P. W.
, and
Brown
,
T. R.
,
1969
, “
Evaluation of Internal Heat Transfer Coefficients for Impingement Cooled Turbine Blades
,”
J. Aircraft
,
6
, No.
1
, pp.
203
208
.
20.
Metzger
,
D. E.
,
Yamashita
,
T.
, and
Jenkins
,
C. W.
,
1969
, “
Impingement Cooling of Concave Surfaces With Lines of Circular Air Jets
,”
ASME J. Eng. Power
,
93
, No.
3
, pp.
149
155
.
21.
Kercher
,
D. M.
, and
Tabakoff
,
W.
,
1970
, “
Heat Transfer by a Square Array of Round Air Jets Impinging Perpendicular to a Flat Surface Including the Effect of Spent Air
,”
ASME J. Eng. Power
,
92
, No.
1
, pp.
73
82
.
22.
Florschuetz
,
L. W.
,
Berry
,
R. A.
, and
Metzger
,
D. E.
,
1980
, “
Periodic Streamwise Variation of Heat Transfer Coefficients for Inline and Staggered Circular Jets With Crossflow of Spent Air
,”
ASME J. Heat Transfer
,
102
, No.
1
. pp.
132
137
.
23.
Florschuetz
,
L. W.
,
Truman
,
C. R.
, and
Metzger
,
D. E.
,
1981
, “
Streamwise Flow and Heat Transfer Distribution for Jet Impingement With Crossflow
,”
ASME J. Heat Transfer
,
103
, No.
2
, pp.
337
342
.
24.
Florschuetz
,
L. W.
,
Metzger
,
D. E.
,
Su
,
C. C.
,
Isoda
,
Y.
, and
Tseng
,
H. H.
,
1984
, “
Heat Transfer Characteristics for Jet Arrays Impingement With Initial Crossflow
,”
ASME J. Heat Transfer
,
106
, No.
1
, pp.
34
41
.
25.
Bunker
,
R. S.
, and
Metzger
,
D. E.
,
1990
, “
Local Heat Transfer in Internally Cooled Turbine Airfoil Leading Edge Regions: Part II—Impingement Cooling With Film Coolant Extraction
,”
ASME J. Turbomach.
,
112
, No.
3
, pp.
459
466
.
26.
Metzger
,
D. E.
, and
Bunker
,
R. S.
,
1990
, “
Local Heat Transfer in Internally Cooled Turbine Airfoil Leading Edge Regions: Part I—Impingement Cooling Without Film Coolant Extraction
,”
ASME J. Turbomach.
,
112
, No.
3
, pp.
451
458
.
27.
Van Treuren
,
K. W.
,
Wang
,
Z.
,
Ireland
,
P. T.
, and
Jones
,
T. V.
,
1994
, “
Detailed Measurements of Local Heat Transfer Coefficient and Adiabatic Wall Temperature Beneath an Array of Impinging Jets
,”
ASME J. Turbomach.
,
116
, No.
2
, pp.
269
374
.
28.
Chang, H., Zhang, D., and Huang, T., 1997, “Impingement Heat Transfer From Rib Roughened Surface Within Arrays of Circular Jet: The Effect of the Relative Position of the jet Hole to the Ribs,” ASME Paper No. 97-GT-331.
29.
Huang
,
Y.
,
Ekkad
,
S. V.
, and
Han
,
J. C.
,
1998
, “
Detailed Heat Transfer Distributions Under an Array of Orthogonal Impinging Jets
,”
J. Thermophys. Heat Transfer
,
12
, No.
1
, pp.
73
79
.
30.
Akella
,
K. V.
, and
Han
,
J. C.
,
1999
, “
Impingement Cooling in Rotating Two-Pass Rectangular Channels With Ribbed Walls
,”
J. Thermophys. Heat Transfer
,
13
, No.
3
, pp.
364
371
.
31.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainty in Single-Sample Experiments
,”
Mech. Eng.
,
75
, Jan., pp.
3
8
.
You do not currently have access to this content.