The influence of Reynolds number and pressure ratio on the operating characteristics of a stepped labyrinth seal was experimentally determined. The geometries investigated represent designs of a stepped labyrinth seal typical for modern jet engines. Heat transfer and discharge measurements were obtained for two plane models with various seal clearances. The experiments covered a range of Reynolds numbers and pressure ratios. Independent variation of Reynolds number and pressure ratio was obtained by adjusting the back pressure at the seal exit for a given pressure ratio. Dimensionless discharge coefficients, describing the sealing performance, were derived from the measured leakage rates. Pressure ratio, Reynolds number, tip geometry, and seal clearance all affected the sealing performance. Finite element calculations were employed to calculate the local heat transfer coefficients from the measured wall and gas temperatures. Averaging of the local values yielded mean heat transfer coefficients and mean Nusselt numbers. The heat transfer was mainly determined by the Reynolds number. Compressibility effects on the heat transfer were observed to be very small.

1.
Zimmermann
,
H.
,
1990
, “
Some Aerodynamic Aspects of Engine Secondary Air Systems
,”
ASME J. Eng. Gas Turbines Power
,
112
, pp.
223
228
.
2.
Zimmermann, H., Kammerer, A., and Wolff, K. H., 1994, “Performance of Worn Labyrinth Seals,” ASME Paper No. 94-GT-131.
3.
Martin
,
H. M.
,
1908
, “
Labyrinth Packings
,”
Engineering
,
85
, pp.
33
36
.
4.
Stodola, A., 1922, Dampf- und Gasturbinen, 5. Auflage, Springer-Verlag, Berlin.
5.
Egli
,
A.
,
1935
, “
The Leakage of Steam Through Labyrinth Seals
,”
Trans. ASME
,
57
, pp.
115
122
.
6.
Kearton
,
W. J.
, and
Keh
,
T. H.
,
1952
, “
Leakage of Air Through Labyrinth Glands of Staggered Type
,”
Proc. Inst. Mech. Eng.
,
166
, pp.
180
188
.
7.
Komotori
,
K.
,
1961
, “
Probleme bei Labyrinth-Stopfbu¨chsen
,”
Proc. Fujihara Memorial Faculty of Eng., Keio Univ.
,
14
, No. 54.
8.
Trutnovsky, K., and Komotori, K., 1981, Beru¨hrungsfreie Dichtungen, VDI-Verlag, Du¨sseldorf.
9.
Stocker, H. L., 1978, “Determining and Improving Labyrinth Seal Performance in Current and Advanced High Performance Gas Turbines,” AGARD-CP-237 Conf. Proc., pp. 13/1–13/22.
10.
Wittig, S., Schelling U., Jacobsen, K., and Kim, S., 1987, “Numerical Predictions and Measurements of Discharge Coefficients in Labyrinth Seals,” ASME Paper No. 87-GT-188.
11.
Morrison
,
G. L.
,
Johnson
,
M. C.
, and
Tatterson
,
G. B.
,
1991
, “
3-D Laser Anemometer Measurements in a Labyrinth Seal
,”
ASME J. Eng. Gas Turbines Power
,
113
, pp.
119
125
.
12.
Prasad, B. V. S. S. S., Sethu Manavalan, V., Nanjunda Rao, N., 1997, “Computational and Experimental Investigations of Straight-Through Labyrinth Seals,” ASME Paper No. 97-GT-326.
13.
Rhode, D. L., Adams, R. G., 2000, “Computed Effect of Rub-Groove Size on Stepped Labyrinth Seal Performance,” ASME Paper No. 2000-GT-0292.
14.
Schramm, V., Willenborg, K., Kim, S., and Wittig, S., 2000, “Influence of a Honeycomb Facing on the Flow Field and Discharge Behavior of a Stepped Labyrinth Seal,” ASME J. Eng. Gas Turbines Power, in press.
15.
Zimmermann, H., and Wolff, K. H., 1998, “Air System Correlations, Part 1: Labyrinth Seals,” ASME Paper No. 98-GT-206.
16.
Wittig
,
S.
,
Do¨rr
,
L.
, and
Kim
,
S.
,
1983
, “
Scaling Effects on Leakage Losses in Labyrinth Seals
,”
ASME J. Eng. Power
,
105
, pp.
305
309
.
17.
Sheinin
,
E. I.
,
1961
, “
Experimentelle Untersuchung des Wa¨rmu¨bergangs in der Zone der Endabdichtungen von Gasturbinen (Russian)
,”
Energomashinostroenie
,
1
, pp.
25
27
.
18.
Shvets
,
I. T.
,
Khavin
,
V. Y.
, and
Dyban
,
E. P.
,
1963
, “
Heat Exchange in Labyrinth Seals of Turbine Rotor (Russian)
,”
Energomashinostroenie
,
12
, pp.
8
12
.
19.
Kapinos
,
V. M.
, and
Gura
,
L. A.
,
1970
, “
Investigation of Heat Transfer in Labyrinth Glands on Static Models
,”
Thermal Eng.
,
17
, No.
11
, pp.
54
56
.
20.
Metzger, D. E., and Bunker, R. S., 1985, “Heat Transfer for Flow Through Simulated Labyrinth Seals,” presented at the Symposium on Transport Phenomena in Rotating Machinery, Honolulu, USA.
21.
Wittig
,
S.
,
Jacobsen
,
K.
,
Schelling
,
U.
, and
Kim
,
S.
,
1988
, “
Heat Transfer in Stepped Labyrinth Seals
,”
ASME J. Eng. Gas Turbines Power
,
110
, pp.
63
69
.
22.
Willenborg, K., Schramm, V., Kim, S., and Wittig, S., 2000, “Influence of a Honeycomb Facing on the Heat Transfer in a Stepped Labyrinth Seal,” ASME J. Eng. Gas Turbines Power, in press.
23.
Kapinos
,
V. M.
, and
Gura
,
L. A.
,
1973
, “
Heat Transfer of a Stepped Labyrinth Seal
,”
Thermal Eng.
,
20
, No.
6
, pp.
28
32
.
24.
Waschka
,
W.
,
Wittig
,
S.
, and
Kim
,
S.
,
1992
, “
Influence of High Rotational Speeds on the Heat Transfer and Discharge Coefficients in Labyrinth Seals
,”
ASME J. Turbomach.
,
114
, pp.
462
468
.
25.
Waschka, W., Scherer, T., Kim, S., and Wittig, S. 1992, “Study of Heat Transfer and Leakage in High Rotating Stepped Labyrinth Seals,” ISROMAC-4, pp. 326–334.
26.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
,
75
, pp.
3
8
.
27.
Johansen
,
F. C.
,
1930
, “
Flow Through Pipe Orifices at Low Reynolds Numbers
,”
Proc. R. Soc. London, Ser. A
,
126
, pp.
231
245
.
28.
Bell
,
K. J.
, and
Bergelin
,
O. P.
,
1959
, “
Flow Through Annular Orifices
,”
Trans. ASME
,
79
, pp.
593
601
.
You do not currently have access to this content.