The Naval Surface Warfare Center, Carderock Division (NSWCCD) Gas Turbine Emerging Technologies Code 9334 was tasked by NSWCCD Shipboard Energy Office Code 859 to research and evaluate fouling resistant compressor coatings for Rolls Royce Allison 501-K Series gas turbines. The objective of these tests was to investigate the feasibility of reducing the rate of compressor fouling degradation and associated rate of specific fuel consumption (SFC) increase through the application of anti-fouling coatings. Code 9334 conducted a market investigation and selected coatings that best fit the test objective. The coatings selected were Sermalon for compressor stages 1 and 2 and Sermaflow S4000 for the inlet guide vanes and remaining 12 compressor stages. Both coatings are manufactured by Sermatech International, are intended to substantially decrease blade surface roughness, have inert top layers, and contain an anti-corrosive aluminum-ceramic base coat. Sermalon contains a Polytetrafluoroethylene (PTFE) topcoat, a substance similar to Teflon, for added fouling resistance. Tests were conducted at the Philadelphia Land Based Engineering Site (LBES). Testing was first performed on the existing LBES 501-K17 gas turbine, which had an uncoated compressor. The compressor was then replaced by a coated compressor and the test was repeated. The test plan consisted of injecting a known amount of salt solution into the gas turbine inlet while gathering compressor performance degradation and fuel economy data for 0, 500, 1000, and 1250 KW generator load levels. This method facilitated a direct comparison of compressor degradation trends for the coated and uncoated compressors operating with the same turbine section, thereby reducing the number of variables involved. The collected data for turbine inlet, temperature, compressor efficiency, and fuel consumption were plotted as a percentage of the baseline conditions for each compressor. The results of each plot show a decrease in the rates of compressor degradation and SFC increase for the coated compressor compared to the uncoated compressor. Overall test results show that it is feasible to utilize antifouling compressor coatings to reduce the rate of specific fuel consumption increase associated with compressor performance degradation.
Skip Nav Destination
Article navigation
July 2003
Technical Papers
Rolls Royce/Allison 501-K Gas Turbine Antifouling Compressor Coatings Evaluation
Daniel E. Caguiat
Daniel E. Caguiat
Naval Surface Warfare Center, Carderock Division, Gas Turbine Emerging Technologies, Code 9334, Phildelphia, PA 19112
Search for other works by this author on:
Daniel E. Caguiat
Naval Surface Warfare Center, Carderock Division, Gas Turbine Emerging Technologies, Code 9334, Phildelphia, PA 19112
Contributed by the International Gas Turbine Institute and presented at the International Gas Turbine and Aeroengine Congress and Exhibition, Amsterdam, The Netherlands, June 3–6, 2002. Manuscript received by the IGTI October 31, 2001. Paper No. 2002-GT-30261. Review Chair: E. Benvenuti.
J. Turbomach. Jul 2003, 125(3): 482-488 (7 pages)
Published Online: August 27, 2003
Article history
Received:
October 31, 2001
Online:
August 27, 2003
Citation
Caguiat, D. E. (August 27, 2003). "Rolls Royce/Allison 501-K Gas Turbine Antifouling Compressor Coatings Evaluation ." ASME. J. Turbomach. July 2003; 125(3): 482–488. https://doi.org/10.1115/1.1573665
Download citation file:
Get Email Alerts
Cited By
Related Articles
Siemens Westinghouse Advanced Turbine Systems Program Final Summary
J. Eng. Gas Turbines Power (July,2004)
Off-Design Performance Investigation of a Low Calorific Value Gas Fired Generic-Type Single-Shaft Gas Turbine
J. Eng. Gas Turbines Power (May,2008)
Degradation Effects on Industrial Gas Turbines
J. Eng. Gas Turbines Power (November,2009)
Gas Turbine Compressor Washing: Historical Developments, Trends and Main Design Parameters for Online Systems
J. Eng. Gas Turbines Power (April,2006)
Related Chapters
Performance Testing of Combined Cycle Power Plant
Handbook for Cogeneration and Combined Cycle Power Plants, Second Edition
Alternative Systems
Turbo/Supercharger Compressors and Turbines for Aircraft Propulsion in WWII: Theory, History and Practice—Guidance from the Past for Modern Engineers and Students
The Special Characteristics of Closed-Cycle Gas Turbines
Closed-Cycle Gas Turbines: Operating Experience and Future Potential