Oscillating vortex generator jets have been used to control boundary layer separation from the suction side of a low-pressure turbine airfoil. A low Reynolds number (Re=25,000) case with low free-stream turbulence has been investigated with detailed measurements including profiles of mean and fluctuating velocity and turbulent shear stress. Ensemble averaged profiles are computed for times within the jet pulsing cycle, and integral parameters and local skin friction coefficients are computed from these profiles. The jets are injected into the mainflow at a compound angle through a spanwise row of holes in the suction surface. Preliminary tests showed that the jets were effective over a wide range of frequencies and amplitudes. Detailed tests were conducted with a maximum blowing ratio of 4.7 and a dimensionless oscillation frequency of 0.65. The outward pulse from the jets in each oscillation cycle causes a disturbance to move down the airfoil surface. The leading and trailing edge celerities for the disturbance match those expected for a turbulent spot. The disturbance is followed by a calmed region. Following the calmed region, the boundary layer does separate, but the separation bubble remains very thin. Results are compared to an uncontrolled baseline case in which the boundary layer separated and did not reattach, and a case controlled passively with a rectangular bar on the suction surface. The comparison indicates that losses will be substantially lower with the jets than in the baseline or passively controlled cases.

1.
Hourmouziadis, J., 1989, “Aerodynamic Design of Low Pressure Turbines,” AGARD Lecture Series 167.
2.
Mayle
,
R. E.
,
1991
, “
The Role of Laminar-Turbulent Transition in Gas Turbine Engines
,”
ASME J. Turbomach.
,
113
, pp.
509
537
.
3.
Sharma, O. P., Ni, R. H., and Tanrikut, S., 1994, “Unsteady Flow in Turbines,” AGARD Lecture Series 195, Paper No. 5.
4.
Volino
,
R. J.
,
2002
, “
Separated Flow Transition Under Simulated Low-Pressure Turbine Airfoil Conditions: Part 1—Mean Flow and Turbulence Statistics
,”
ASME J. Turbomach.
,
124
, pp.
645
655
.
5.
Volino
,
R. J.
,
2003
, “
Passive Flow Control on Low-Pressure Turbine Airfoils
,”
ASME J. Turbomach.
,
125
, pp.
754
764
.
6.
Howell
,
R. J.
,
Ramesh
,
O. N.
,
Hodson
,
H. P.
,
Harvey
,
N. W.
, and
Schulte
,
V.
,
2001
, “
High Lift and Aft-Loaded Profiles for Low-Pressure Turbines
,”
ASME J. Turbomach.
,
123
, pp.
181
188
.
7.
Gad-el-Hak, M., 2000, Flow Control, Passive, Active, and Reactive Flow Management, Cambridge University Press, Cambridge.
8.
Lake, J. P., King, P. I., and Rivir, R. B., 2000, “Low Reynolds Number Loss Reduction on Turbine Blades With Dimples and V-Grooves,” AIAA Paper 00-738.
9.
Van Treuren
,
K. W.
,
Simon
,
T.
,
von Koller
,
M.
,
Byerley
,
A. R.
,
Baughn
,
J. W.
, and
Rivir
,
R.
,
2001
, “
Measurements in a Turbine Cascade Flow Under Ultra Low Reynolds Number Conditions
,”
ASME J. Turbomach.
,
124
, pp.
100
106
.
10.
Lee
,
J.
,
Sloan
,
M. L.
, and
Paynter
,
G. C.
,
1994
, “
Lag Model for Turbulent Boundary Layers Over Rough Bleed Surfaces
,”
J. Propul. Power
,
10
, pp.
562
568
.
11.
Sturm
,
W.
,
Schcugenpflug
,
H.
, and
Fottner
,
L.
,
1992
, “
Performance Improvements of Compressor Cascades by Controlling the Profile and Sidewall Boundary Layers
,”
ASME J. Turbomach.
,
114
, pp.
477
486
.
12.
Johnston
,
J. P.
, and
Nishi
,
M.
,
1990
, “
Vortex Generator Jets. Means for Flow Separation Control
,”
AIAA J.
,
28
, pp.
989
994
.
13.
Compton
,
D. A.
, and
Johnston
,
J. P.
,
1992
, “
Streamwise Vortex Production by Pitched and Skewed Jets in a Turbulent Boundary Layer
,”
AIAA J.
,
30
, pp.
640
647
.
14.
McManus, K., Legner, H., and Davis, S., 1994, “Pulsed Vortex Generator Jets for Active Control of Flow Separation,” AIAA Paper 94-2218.
15.
Raghunathan, S., Watterson, J., Cooper, R., and Lee, S., 1999, “Short Wide Angle Diffuser With Pulse Jet Control,” AIAA Paper 99-0280.
16.
Sinha
,
S. K.
, and
Pal
,
D.
,
1993
, “
Optimizing the Use of Acoustic Perturbation to Control Unsteady Boundary Layer Separation
,”
FED (Am. Soc. Mech. Eng.)
,
157
, pp.
253
263
.
17.
Jacobson
,
S. A.
, and
Reynolds
,
W. C.
,
1998
, “
Active Control of Streamwise Vortices and Streaks in Boundary Layers
,”
J. Fluid Mech.
,
360
, pp.
179
211
.
18.
Miau
,
J. J.
,
Lee
,
K. C.
,
Chen
,
M. H.
, and
Chou
,
J. H.
,
1991
, “
Control of Separated Flow by a Two-Dimensional Oscillating Fence
,”
AIAA J.
,
29
, pp.
1140
1148
.
19.
Sinha
,
S. K.
,
Pal
,
D.
, and
Banerjee
,
D.
,
1996
, “
Control of Flow Separation Using the EMEMS Approach: Proof of Concept Experiments
,”
DSC (Am. Soc. Mech. Eng.)
,
59
, pp.
253
263
.
20.
Whitehead
,
L. A.
,
Graham
,
D. J.
,
Moore
,
F. A.
,
Bolleman
,
B. J.
,
Lake
,
R.
, and
Dunwoody
,
A. B.
,
1996
, “
Investigation of Boundary Layer Flow Separation Control by Airfoil Surface Vibration
,”
Can. Aeronautics Space J.
,
42
, pp.
213
219
.
21.
Amitay
,
M.
, and
Glezer
,
A.
,
2002
, “
Role of Actuation Frequency in Controlled Flow Reattachment Over a Stalled Airfoil
,”
AIAA J.
,
40
, pp.
209
216
.
22.
Huang
,
J.
,
Corke
,
T. C.
, and
Thomas
,
F. O.
,
2002
, “
Separation Control Over Low Pressure Turbine Blades
,”
Bull. Am. Phys. Soc.
, DFD2002,
47
(
10
), p.
167
167
.
23.
Hultgren
,
L. S.
, and
Ashpis
,
D. E.
,
2002
, “
Glow Discharge Plasma Active Control of Separation at Low Pressure Turbine Conditions
,”
Bull. Am. Phys. Soc.
, DFD2002,
47
(
10
), pp.
167
168
.
24.
Bons
,
J. P.
,
Sondergaard
,
R.
, and
Rivir
,
R. B.
,
2001
, “
Turbine Separation Control Using Pulsed Vortex Generator Jets
,”
ASME J. Turbomach.
,
123
, pp.
198
206
.
25.
Bons
,
J. P.
,
Sondergaard
,
R.
, and
Rivir
,
R. B.
,
2002
, “
The Fluid Dynamics of LPT Blade Separation Control Using Pulsed Jets
,”
ASME J. Turbomach.
,
124
, pp.
77
85
.
26.
Gostelow
,
J. P.
,
Walker
,
G. J.
,
Solomon
,
W. J.
,
Hong
,
G.
, and
Melwani
,
N.
,
1997
, “
Investigation of the Calmed Region Behind a Turbulent Spot
,”
ASME J. Turbomach.
,
119
, pp.
802
809
.
27.
Schulte
,
V.
, and
Hodson
,
H. P.
,
1998
, “
Prediction of the Becalmed Region for LP Turbine Profile Design
,”
ASME J. Turbomach.
,
120
, pp.
839
846
.
28.
Volino
,
R. J.
,
2002
, “
Separated Flow Transition Under Simulated Low-Pressure Turbine Airfoil Conditions: Part 2—Turbulence Spectra
,”
ASME J. Turbomach.
,
124
, pp.
656
664
.
29.
Volino
,
R. J.
,
Schultz
,
M. P.
, and
Pratt
,
C. M.
,
2001
, “
Conditional Sampling in a Transitional Boundary Layer Under High Free-Stream Turbulence Conditions
,”
ASME J. Fluids Eng.
,
125
, pp.
28
37
.
30.
Wills
,
J. A. B.
,
1962
, “
The Correction of Hot-Wire Readings for Proximity to a Solid Boundary
,”
J. Fluid Mech.
,
12
, pp.
65
92
.
31.
Volino
,
R. J.
, and
Simon
,
T. W.
,
1997
, “
Velocity and Temperature Profiles in Turbulent Boundary Layers Experiencing Streamwise Pressure Gradients
,”
ASME J. Heat Transfer
,
119
, pp.
433
439
.
32.
Ligrani
,
P. M.
, and
Bradshaw
,
P.
,
1987
, “
Spatial Resolution and Measurement of Turbulence in the Viscous Sublayer Using Subminiature Hot-Wire Probes
,”
Exp. Fluids
,
5
, pp.
407
417
.
33.
Schlichting, H., 1979, Boundary Layer Theory, 7th ed. McGraw-Hill, New York.
34.
Kaszeta, R. W., Simon, T. W., and Ashpis, D. E., 2001, “Experimental Investigation of Transition to Turbulence as Affected by Passing Wakes,” ASME Paper 2001-GT-195.
35.
Seifert
,
A.
, and
Pack
,
L. G.
,
1999
, “
Oscillatory Control of Separation at High Reynolds Numbers
,”
AIAA J.
,
37
, pp.
1062
1071
.
You do not currently have access to this content.