Recent experimental work has documented the importance of wake passing on the behavior of transitional boundary layers on the suction surface of axial compressor blades. This paper documents computational fluid dynamics (CFD) simulations using a commercially available general-purpose CFD solver, performed on a representative case with unsteady transitional behavior. The study implements an advanced version of a three-equation eddy-viscosity model previously developed and documented by the authors, which is capable of resolving boundary layer transition. It is applied to the test cases of steady and unsteady boundary layer transition on a two-dimensional flat plate geometry with a freestream velocity distribution representative of the suction side of a compressor airfoil. The CFD results are analyzed and compared to a similar experimental test case from the open literature. Results with the model show a dramatic improvement over more typical Reynolds-averaged Navier–Stokes (RANS)-based modeling approaches, and highlight the importance of resolving transition in both steady and unsteady compressor aerosimulations.

1.
Dong
,
Y.
, and
Cumpsty
,
N. A.
,
1990
, “
Compressor Blade Boundary Layers: Part 1—Test Facility and Measurements With No Incident Wakes
,”
ASME J. Turbomach.
,
112
, pp.
222
230
.
2.
Dong
,
Y.
, and
Cumpsty
,
N. A.
,
1990
, “
Compressor Blade Boundary Layers: Part 2—Measurements With Incident Wakes
,”
ASME J. Turbomach.
,
112
, pp.
231
240
.
3.
Walraevens
,
R. E.
, and
Cumpsty
,
N. A.
, “
Leading Edge Separation Bubbles on Turbomachine Blades
,”
ASME J. Turbomach.
,
117
, pp.
115
125
.
4.
Cumpsty, N. A., Dong, Y., and Li, Y. S., 1995, “Compressor Blade Boundary Layers in the Presence of Wakes,” ASME paper no. 95-GT-443.
5.
Halstead
,
D. E.
,
Wisler
,
D. C.
,
Okiishi
,
T. H.
,
Walker
,
G. J.
,
Hodson
,
H. P.
, and
Shin
,
H.
,
1997
, “
Boundary Layer Development in Axial Compressors and Turbines: Part 1 of 4—Composite Picture
,”
ASME J. Turbomach.
,
119
, pp.
114
127
.
6.
Halstead
,
D. E.
,
Wisler
,
D. C.
,
Okiishi
,
T. H.
,
Walker
,
G. J.
,
Hodson
,
H. P.
, and
Shin
,
H.
,
1997
, “
Boundary Layer Development in Axial Compressors and Turbines: Part 2 of 4—Compressors
,”
ASME J. Turbomach.
,
119
, pp.
426
444
.
7.
Halstead
,
D. E.
,
Wisler
,
D. C.
,
Okiishi
,
T. H.
,
Walker
,
G. J.
,
Hodson
,
H. P.
, and
Shin
,
H.
,
1997
, “
Boundary Layer Development in Axial Compressors and Turbines: Part 4 of 4—Computations and Analyses
,”
ASME J. Turbomach.
,
119
, pp.
128
139
.
8.
Savill, A. M., 1993, “Some Recent Progress in the Turbulence Modelling of By-Pass Transition,” In Near-Wall Turbulent Flows, So, R. M. C., Speziale, C. G., and Launder, B. E. (eds.), Elsevier Science, New York, pp. 829–848.
9.
Yang, Z., and Shih, T. H., 1993, “A k-ε Model for Turbulent and Transitional Boundary Layers,” Proceedings of the International Conference on Near-Wall Turbulent Flows, Tempe, AZ, p. 165.
10.
Biswas
,
D.
, and
Fukuyama
,
Y.
,
1994
, “
Calculation of Transitional Boundary Layers With an Improved Low-Reynolds-Number Version of the k-ε Turbulence Model
,”
ASME J. Turbomach.
,
116
, pp.
765
773
.
11.
Volino
,
R. J.
, and
Simon
,
T. W.
,
1997
, “
Boundary Layer Transition Under High Free-Stream Turbulence and Strong Acceleration Conditions: Part 2—Turbulent Transport Results
,”
ASME J. Heat Transfer
,
119
, pp.
427
432
.
12.
Matsubara
,
M.
, and
Alfredsson
,
P. H.
,
2001
, “
Disturbance Growth in Boundary Layers Subjected to Free-Stream Turbulence
,”
J. Fluid Mech.
,
430
, pp.
149
168
.
13.
Andersson
,
P.
,
Berggren
,
M.
, and
Henningson
,
D. S.
,
1999
, “
Optimal Disturbances and Bypass Transition in Boundary Layers
,”
Phys. Fluids
,
11
, pp.
134
150
.
14.
Leib
,
S. J.
,
Wundrow
,
D. W.
, and
Goldstein
,
M. E.
,
1999
, “
Effect of Free-Stream Turbulence and Other Vortical Disturbances on a Laminar Boundary Layer
,”
J. Fluid Mech.
,
380
, pp.
169
203
.
15.
Jacobs
,
R. G.
, and
Durbin
,
P. A.
,
2001
, “
Simulations of Bypass Transition
,”
J. Fluid Mech.
,
428
, pp.
185
212
.
16.
Mayle
,
R. E.
, and
Schulz
,
A.
,
1997
, “
The Path to Predicting Bypass Transition
,”
ASME J. Turbomach.
,
119
, pp.
405
411
.
17.
Michelassi
,
V.
,
Martelli
,
F.
,
Denos
,
R.
,
Arts
,
T.
, and
Sieverding
,
C. H.
,
1999
, “
Unsteady Heat Transfer in Stator-Rotor Interaction by Two-Equation Turbulence Model
,”
ASME J. Turbomach.
,
121
, pp.
436
447
.
18.
Suzen
,
Y. B.
, and
Huang
,
P. G.
,
2000
, “
Modeling of Flow Transition Using an Intermittency Transport Equation
,”
ASME J. Fluids Eng.
,
122
, pp.
273
284
.
19.
Steelant
,
J.
, and
Dick
,
E.
,
2001
, “
Modeling of Laminar-Turbulent Transition for High Freestream Turbulence
,”
ASME J. Fluids Eng.
,
123
, pp.
22
30
.
20.
Walters
,
D. K.
, and
Leylek
,
J. H.
,
2004
, “
A New Model for Boundary-Layer Transition Using a Single-Point RANS Approach
,”
ASME J. Turbomach.
,
126
, pp.
193
202
.
21.
Blair
,
M. F.
,
1983
, “
Influence of Free-Stream Turbulence on Turbulent Boundary Layer Heat Transfer and Mean Profile Development, Part I—Experimental Data
,”
ASME J. Heat Transfer
,
105
, pp.
33
40
.
22.
Radomsky
,
R. W.
, and
Thole
,
K. A.
,
2000
, “
Flowfield Measurements for a Highly Turbulent Flow in a Stator Vane Passage
,”
ASME J. Turbomach.
,
122
, p.
255
255
.
23.
Radomsky, R. W., and Thole, K. A., 2001, “Detailed Boundary-Layer Measurements on a Turbine Stator Vane at Elevated Freestream Turbulence Levels,” ASME paper no. 2001-GT-0169.
24.
Volino
,
R. J.
,
1998
, “
A New Model for Free-Stream Turbulence Effects on Boundary Layers
,”
ASME J. Turbomach.
,
120
, pp.
613
620
.
25.
Ottavy
,
X.
,
Vilmin
,
S.
,
Opoka
,
M.
,
Hodson
,
H.
, and
Gallimore
,
S.
,
2002
, “
The Effects of Wake-Passing Unsteadiness Over a Highly-Loaded Compressor-Like Flat Plate
,”
ASME J. Turbomach.
,
126
, pp.
13
23
.
26.
Kim
,
J.
,
Moin
,
P.
, and
Moser
,
R. D.
,
1987
, “
Turbulence Statistics in Fully Developed Channel Flow at Low Reynolds Number
,”
J. Fluid Mech.
,
177
, pp.
133
186
.
27.
Patankar, S. V., 1980, Numerical Heat Transfer and Fluid Flow, Taylor & Francis, London.
28.
Shih
,
T.-H.
,
Liou
,
W. W.
,
Shabbir
,
A.
,
Yang
,
Z.
, and
Zhu
,
J.
,
1995
, “
A New k-ε Eddy Viscosity Model for High Reynolds Number Turbulent Flows
,”
Comput. Fluids
,
24
, pp.
227
238
.
29.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
, pp.
1598
1605
.
You do not currently have access to this content.