In the paper, self-adapting models capable of reproducing time-dependent data with high computational speed are investigated. The considered models are recurrent feed-forward neural networks (RNNs) with one feedback loop in a recursive computational structure, trained by using a back-propagation learning algorithm. The data used for both training and testing the RNNs have been generated by means of a nonlinear physics-based model for compressor dynamic simulation, which was calibrated on a multistage axial-centrifugal small size compressor. The first step of the analysis is the selection of the compressor maneuver to be used for optimizing RNN training. The subsequent step consists in evaluating the most appropriate RNN structure (optimal number of neurons in the hidden layer and number of outputs) and RNN proper delay time. Then, the robustness of the model response towards measurement uncertainty is ascertained, by comparing the performance of RNNs trained on data uncorrupted or corrupted with measurement errors with respect to the simulation of data corrupted with measurement errors. Finally, the best RNN model is tested on field data taken on the axial-centrifugal compressor on which the physics-based model was calibrated, by comparing physics-based model and RNN predictions against measured data. The comparison between RNN predictions and measured data shows that the agreement can be considered acceptable for inlet pressure, outlet pressure and outlet temperature, while errors are significant for inlet mass flow rate.

1.
Blotemberg
,
W.
, 1993, “
A Model for the Dynamic Simulation of a Two-Shaft Industrial Gas Turbine With Dry Low Nox Combustor
,” ASME Paper No. 93-GT-355.
2.
Schobeiri
,
M. T.
,
Attia
,
M.
, and
Lippe
,
C.
, 1994, “
GETRAN: A Generic, Modularly Structured Computer Code for Simulation of Dynamic Behavior of Aero- and Power Generation Gas Turbine Engines
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
116
, pp.
483
494
.
3.
Bettocchi
,
R.
,
Spina
,
P. R.
, and
Fabbri
,
F.
, 1996, “
Dynamic Modeling of Single-Shaft Industrial Gas Turbine
,” ASME Paper No. 96-GT-332.
4.
Bianchi
,
M.
,
Peretto
,
A.
, and
Spina
,
P. R.
, 1998, “
Modular Dynamic Model of Multi-Shaft Gas Turbine and Validation Test
,” Proc. of “The Winter Annual Meeting of ASME,” AES-
38
, pp.
73
81
.
5.
Traverso
,
A.
,
Calzolari
,
F.
, and
Massardo
,
A.
, 2003, “
Transient Analysis and Control System for Advanced Cycles based on Micro Gas Turbine Technology
,” ASME Paper No. GT2003-38269.
6.
Pfeifer
,
U.
, and
Warnack
,
D.
, 2003, “
Simulation of Non-Steady and Non-Linear Flow Phenomena in Complex Piping Systems of Gas Turbines
,” ASME Paper No. GT2003-38056.
7.
Venturini
,
M.
, 2005, “
Development and Experimental Validation of a Compressor Dynamic Model
,”
ASME J. Turbomach.
0889-504X,
127
(
3
), pp.
599
608
.
8.
De Mello
,
F. P.
, 1994, “
Dynamic Models for Combined Cycle Plants in Power System Studies
,”
IEEE Trans. Power Syst.
0885-8950,
9
(
3
), pp.
1698
1708
.
9.
Camporeale
,
S. M.
,
Fortunato
,
B.
, and
Mastrovito
,
M.
, 2002, “
A High-Fidelity Real-Time Simulation Code of Gas Turbine Dynamics for Control Applications
,” ASME Paper No. GT-2002-30039.
10.
Sampath
,
S.
,
Li
,
Y. G.
,
Ogaji
,
S. O. T.
, and
Singh
,
R.
, 2003, “
Fault Diagnosis of a Two-Spool Turbo-Fan Engine Using Transient Data: A Genetic Algorithm Approach
,” ASME Paper No. GT2003-38300.
11.
Botros
,
K. K.
,
Jungowski
,
W. M.
, and
Richards
,
D. J.
, 1996, “
Compressor Station Recycle System Dynamics During Emergency Shutdown
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
118
, pp.
641
653
.
12.
Theotokatos
,
G.
, and
Kyrtatos
,
N. P.
, 2001, “
Diesel Engine Transient Operation With Turbocharger Compressor Surging
,” ASME Paper No. 2001-01-1241.
13.
Moore
,
F. K.
, and
Greitzer
,
E. M.
, 1986, “
A Theory of Post-Stall Transients in Axial Compression Systems: Part I—Development of Equations
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
108
, pp.
68
76
.
14.
Fink
,
D. A.
,
Cumpsty
,
N. A.
, and
Greitzer
,
E. M.
, 1992, “
Surge Dynamics in a Free-Spool Centrifugal Compressor System
,”
ASME J. Turbomach.
0889-504X,
114
, pp.
321
332
.
15.
Baojie
,
L.
,
Hongwei
,
W.
,
Huoxing
,
L.
,
Hongjun
,
Y.
,
Haokang
,
J.
, and
Maozhang
,
C.
, 2003, “
Experimental Investigation of Unsteady Flow Field in the Tip Region of an Axial Compressor Rotor Passage at Near Stall Condition with SPIV
,” ASME Paper No. GT2003-38185.
16.
Botha
,
B. W.
,
Du Toit
,
B.
, and
Rousseau
,
P. G.
, 2003, “
Development of a Mathematical Compressor Model to Predict Surge in a Close Loop Brayton Cycle
,” ASME Paper No. GT2003-38795.
17.
Bakken
,
L. E.
,
Bjorge
,
T.
,
Bradley
,
T. M.
, and
Smith
,
N.
, 2002, “
Validation of Compressor Transient Behavior
,” ASME Paper No. GT-2002-30279.
18.
Dedoussis
,
V.
,
Mathioudakis
,
K.
, and
Papailiou
,
K. D.
, 1997, “
Numerical Simulation of Blade Fault Signatures From Unsteady Wall Pressure Signals
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
119
, pp.
362
369
.
19.
Aretakis
,
N.
,
Mathioudakis
,
K.
, and
Stamatis
,
A.
, 1998, “
Blade Fault Recognition Based on Signal Processing and Adaptive Fluid Dynamic Modeling
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
120
, pp.
543
549
.
20.
Bozzi
,
L.
,
Crosa
,
G.
, and
Trucco
,
A.
, 2003, “
Simplified Simulation Block Diagram of Twin-Shaft Gas Turbines
,” ASME Paper No. GT-2003-38679.
21.
Ohanian
,
S.
, and
Kurz
,
R.
, 2001, “
Series or Parallel Arrangement in a Two-Unit Compressor Station
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
124
, pp.
936
941
.
22.
Bettocchi
,
R.
,
Pinelli
,
M.
,
Spina
,
P. R.
,
Venturini
,
M.
, and
Zanetta
,
G. A.
, 2006, “
Assessment of the Robustness of Gas Turbine Diagnostics Tools Based on Neural Networks
,” ASME Paper No. GT2006-90118.
23.
Desideri
,
U.
,
Fantozzi
,
F.
,
Bidini
,
G.
, and
Mathieu
,
P.
, 1997, “
Use of Artificial Neural Networks for the Simulation of Combined Cycles Transients
,” ASME Paper No. 97-GT-442.
24.
Chiras
,
N.
,
Evans
,
C.
, and
Rees
,
D.
, 2002, “
Nonlinear Gas Turbine Modeling Using Feedforward Neural Networks
,” ASME Paper No. GT-2002-30035.
25.
Ogaji
,
S. O. T.
,
Li
,
Y. G.
,
Sampath
,
S.
, and
Singh
,
R.
, 2003, “
Gas Path Fault Diagnosis of a Turbofan Engine From Transient Data Using Artificial Neural Networks
,” ASME Paper No. GT2003-38423.
26.
Bettocchi
,
R.
,
Pinelli
,
M.
, and
Spina
,
P. R.
, 2005, “
A MultiStage Compressor Test Facility: Uncertainty Analysis and Preliminary Test Results
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
127
(
1
), pp.
170
177
.
27.
Faussett
,
L.
, 1994,
Fundamentals of Neural Networks-Architectures, Algorithms and Applications
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
28.
Haykin
,
S.
, 1999,
Neural Networks-A Comprehensive Foundation
, 2nd ed.,
Prentice-Hall
,
Englewood Cliffs, NJ
.
29.
Arsie
,
I.
,
Pianese
,
C.
, and
Sorrentino
,
M.
, 2002, “
Recurrent Neural Network Based Air-Fuel Ratio Observer for SI Internal Combustion Engines
,”
Proc. of ESDA 2002
, ESDA2002/APM038 ACC008.
30.
Simani
,
S.
,
Fantuzzi
,
C.
, and
Spina
,
P. R.
, 1998, “
Application of a Neural Network in Gas Turbine Control Sensor Fault Detection
,”
Proc. of the 1998 IEEE International Conference on Control Applications
, Trieste, Italy.
31.
Romessis
,
C.
,
Stamatis
,
A.
, and
Mathioudakis
,
K.
, 2001, “
A Parametric Investigation of the Diagnostic Ability of Probabilistic Neural Networks on Turbofan Engines
,” ASME Paper No. 2001-GT-0011.
32.
Bettocchi
,
R.
,
Pinelli
,
M.
,
Spina
,
P. R.
,
Venturini
,
M.
, and
Burgio
,
M.
, 2004, “
Setup of a Robust Neural Network for Gas Turbine Simulation
,” ASME Paper No. GT2004-53421.
33.
Parlos
,
A.
, G.,
Rais
,
O. T.
, and
Atiya
,
A. F.
, 2000, “
Multi-Step-Ahead Prediction in Complex Systems Using Dynamic Recurrent Neural Networks
,”
Neural Networks
0893-6080,
13
(
7
), pp.
765
786
.
34.
Venturini
,
M.
, 2006, “
Optimization of a Real-Time Simulator Based on Recurrent Neural Networks for Compressor Transient Behavior Prediction
,” ASME Paper No. GT2006-90117.
35.
Cybenko
,
G.
, 1989, “
Approximation by Superimposition of a Sigmoidal Function
,”
Math. Control, Signals, Syst.
0932-4194,
2
, pp.
303
314
.
36.
Kolmogorov
,
A. N.
, 1965, “
On the Representation of Continuos Functions of Many Variables by Superposition of Continuous Functions of One Variable and Addition
,”
Am. Math. Soc. Transl.
0065-9290,
28
, pp.
55
59
.
You do not currently have access to this content.