Due to the trend in the design of modern aeroengines to reduce weight and to realize high pressure ratios, fan and first-stage compressor blades are highly susceptible to flutter. At operating points with transonic flow velocities and high incidences, stall flutter might occur involving strong shock-boundary layer interactions, flow separation, and oscillating shocks. In this paper, results of unsteady Navier-Stokes flow calculations around an oscillating blade in a linear transonic compressor cascade at different operating points including near-stall conditions are presented. The nonlinear unsteady Reynolds-averaged Navier-Stokes equations are solved time accurately using implicit time integration. Different low-Reynolds-number turbulence models are used for closure. Furthermore, empirical algebraic transition models are applied to enhance the accuracy of prediction. Computations are performed two dimensionally as well as three dimensionally. It is shown that, for the steady calculations, the prediction of the boundary layer development and the blade loading can be substantially improved compared with fully turbulent computations when algebraic transition models are applied. Furthermore, it is shown that the prediction of the aerodynamic damping in the case of oscillating blades at near-stall conditions can be dependent on the applied transition models.

1.
Whitehead
,
D.
, and
Grant
,
R.
, 1980, “
Force and Moment Coefficients for High Deflection Cascades
,”
Proceedings of the 2nd International Symposium on Aeroelasticity in Turbomachines
,
P.
Suter
, ed.,
Juris-Verlag
, Zurich, pp.
85
128
.
2.
Montgomery
,
M.
, and
Verdon
,
J.
, 1994, “
CA Linearized Unsteady Euler Analysis for Turbomachinery Blade Rows Using an Implicit Wave-Split Scheme
,”
Proceedings of the 7th International Symposium on Unsteady Aerodynamics, Aeroacoustics and Aeroelasticity in Turbomachines and Propellers
,
Y.
Tanida
and
M.
Namba
, eds., Vol.
7
, pp.
143
160
.
3.
Clark
,
W.
, and
Hall
,
K.
, 1995, “
A Numerical Model of the Onset of Stall Flutter in Cascades
,”
J. Comput. Phys.
0021-9991,
53
, pp.
1
11
.
4.
He
,
L.
, and
Denton
,
J.
, 1993, “
Three-Dimensional Time-Marching Inviscid and Viscous Solutions for Unsteady Flows Around Vibrating Blades
,” ASME Paper No. 93-GT-92.
5.
Eguchi
,
T.
, and
Wiedermann
,
A.
, 1994, “
Numerical Analysis of Unstalled and Stalled Flutter Using a Navier-Stokes Code with Deforming Meshes
,”
Proceedings of the 7th International Symposium on Unsteady Aerodynamics, Aeroacoustics and Aeroelasticity in Turbomachines and Propellers
,
Y.
Tanida
and
M.
Namba
, eds., Vol.
7
, pp.
237
254
.
6.
Abhari
,
R.
, and
Giles
,
M.
, 1995, “
A Navier Stokes Analysis of Airfoils in Oscillating Transonic Cascades for the Prediction of Aerodynamic Damping
,” in
Momentum Transfer in Boundary Layers
,
McGraw-Hill
,
New York
, pp.
1
10
.
7.
Grüber
,
B.
, and
Carstens
,
V.
, 1996, “
Computation of the Unsteady Transonic Flow in Harmonically Oscillating Turbine Cascades Taking into Account Viscous Effects
,” ASME Paper No. 96-GT-338.
8.
Weber
,
S.
,
Benetschik
,
H.
,
Peitsch
,
D.
, and
Gallus
,
H.
, 1997, “
A Numerical Approach to Unstalled and Stalled Flutter Phenomena in Turbomachinery Cascades
,” ASME Paper No. 97-GT-102.
9.
Höhn
,
W.
, and
Fransson
,
T.
, 1997, “
Flutter Analysis of Two-Dimensional Viscous Subsonic and Transonic Flow in Turbomachines Using the Advection Upstream Splitting Method (AUSM)
,”
Proceedings of the 8th International Symposium on Unsteady Aerodynamics, Aeroacoustics and Aeroelasticity in Turbomachines and Propellers
,
T.
Fransson
, ed., Vol.
8
, pp.
195
210
.
10.
Gerolymos
,
G.
,
Vallet
,
I.
,
Bölcs
,
A.
, and
Ott
,
P.
, 1996, “
Computation of Unsteady Three-Dimensional Transonic Nozzle Flows Using k-ϵ Turbulence Closure
,”
AIAA J.
0001-1452,
34
(
7
), pp.
1331
1340
.
11.
Ekaterinaris
,
J.
, and
Platzer
,
M.
, 1994, “
Progress in the Analysis of Blade Stall Flutter
,”
Proceedings of the 7th International Symposium on Unsteady Aerodynamics, Aeroacoustics and Aeroelasticity in Turbomachines and Propellers
,
Y.
Tanida
and
M.
Namba
, eds., Vol.
7
, pp.
287
302
.
12.
Brouillet
,
B.
,
Benetschik
,
H.
,
Volmar
,
T.
,
Gallus
,
H.
, and
Niehuis
,
R.
, 1999, “
3D Navier-Stokes Simulation of a Transonic Flutter Cascade Near Stall Conditions
,” in
Proceedings of the International Gas Turbine Congress
, Kobe, Japan,
T.
Tamaru
, ed., The Organizing Commitee IGTC, Gas Turbine Society of Japan, Vol.
1
, pp.
511
518
.
13.
Savill
,
A.
, 1995, “
A Summary Report on the Cost ERCOFTAC Transition SIG Project Evaluating Turbulence Models for Predicting Transition
,”
ERCOFTAC Bulletin
,
24
, pp.
57
-–
61
.
14.
Müller
,
M.
,
Gallus
,
H.
, and
Niehuis
,
R.
, 2000, “
A Study on Models to Simulate Boundary Layer Transition in Turbomachinery Flows
,” ASME Paper 2000-GT-274.
15.
Eulitz
,
F.
, 2000, “
Modeling and Simulation of Transition Phenomena in Unsteady Turbomachinery Flow
,”
Proceedings of the 9th International Symposium on Unsteady Aerodynamics, Aeroacoustics and Aeroelasticity of Turbomachines
,
P.
Ferrand
and
S.
Aubert
, eds., Vol.
9
, pp.
332
337
.
16.
Menter
,
F. R.
,
Langtry
,
R. B.
,
Likki
,
S. R.
,
Suzen
,
Y. B.
,
Huang
,
P. G.
, and
Vlker
,
S.
, 2004, “
A Correlation-Based Transition Model Using Local Variables: Part II -Test Cases and Industrial Applications
,” ASME Paper No. GT-2004–53454.
17.
Praisner
,
T. J.
,
Grover
,
E. A.
,
Rice
,
M. J.
, and
Clark
,
J. P.
, 2004, “
Predicting Transition in Turbomachinery: Part II-Model Validation and Benchmarking
,” ASME Paper No. GT-2004–53454.
18.
Emmons
,
H.
, 1951, “
The Laminar-Turbulent Transition in a Boundary Layer-Part I
,”
J. Aerosp. Sci.
0095-9820,
18
(
7
), pp.
490
498
.
19.
Thermann
,
H.
,
Müller
,
M.
, and
Niehuis
,
R.
, 2001, “
Numerical Simulation of the Boundary Layer Transition in Turbomachinery Flows
,” ASME Paper No. 2001-GT-475.
20.
Benetschik
,
H.
,
Lohmann
,
A.
,
Lücke
,
J.
, and
Gallus
,
H.
, 1996, “
Inviscid and Viscous Analysis of Three-Dimensional Turbomachinery Flows Using an Implicit Upwind Algorithm
,” AIAA Paper No. 96–2556.
21.
Roe
,
P.
, 1981, “
Approximate Riemann Solvers, Parameter Vectors and Difference Schemes
,”
J. Comput. Phys.
0021-9991,
43
, pp.
357
372
.
22.
van Leer
,
B.
, 1979, “
Towards the Ultimate Conservative Difference Scheme v. a Second-order Sequel to Godunov
,”
J. Comput. Phys.
0021-9991,
32
, pp.
101
136
.
23.
Chakravarthy
,
S.
, 1988, “
High Resolution Upwind Formulations for the Navier-Stokes Equations
,”
Von Karman Institute for Fluid Dynamics-Lecture Series
, No. 5, Rhode Saint Genese, Belgium, pp.
1
105
.
24.
Abid
,
R.
, 1993, “
Evaluation of Two-Equation Turbulence Models for Predicting Transitional Flows
,”
Int. J. Eng. Sci.
0020-7225,
31
(
6
), pp.
831
840
.
25.
Chien
,
K.
, 1982, “
Prediction of Channel and Boundary-Layer Flows with a Low-Reynolds-Number-Turbulence Model
,”
AIAA J.
0001-1452,
20
(
1
), pp.
33
38
.
26.
Moore
,
J.
, and
Moore
,
J.
, 1999, “
Realizability in Turbulence Modelling for Turbomachinery CFD
,” ASME Paper No. 99-GT-24.
27.
Durbin
,
P.
, 1991, “
Near-Wall Turbulence Closure Modelling Without Damping Functions
,”
Theor. Comput. Fluid Dyn.
0935-4964,
3
(
1
), pp.
1
13
.
28.
Narasimha
,
R.
, 1957, “
On the Distribution of Intermittency in the Transition Region of a Boundary Layer
,”
J. Aerosp. Sci.
0095-9820,
24
(
9
), pp.
711
712
.
29.
Chen
,
K.
, and
Thyson
,
N.
, 1971, “
Extension of Emmons’ Spot Theory to Flows on Blunt Bodies
,”
AIAA J.
0001-1452,
9
(
5
), pp.
821
825
.
30.
Solomon
,
W.
,
Walker
,
G.
, and
Gostelow
,
J.
, 1996, “
Transition Length Prediction for Flows with Rapidly Changing Pressure Gradients
,”
ASME J. Turbomach.
0889-504X,
118
(
4
), pp.
744
751
.
31.
Walker
,
G.
,
Subroto
,
P.
, and
Platzer
,
M.
, 1988, “
Transition Modelling Effects on Viscous/Inviscid Interaction Analysis of Low Reynolds Number Airfoil Flows Involving Laminar Separation Bubbles
,” ASME Paper No. 88-GT-32.
32.
Michelassi
,
V.
, and
Martelli
,
F.
, 1998, “
Numerical Simulation of Unsteady Stator-Rotor Interaction in Brite-Turbine Stage
,”
Blade Row Interference Effects in Axial Turbomachinery Stages
,
H. H.
Sieverding
,
C. H.
, ed., Vol.
2
, von Karman Institute for Fluid Dynamics, Rhode Saint Genese, Belgium.
33.
Mayle
,
R.
, 1991, “
The Role of Laminar-Turbulent Transition in Gas Turbine Engines
,”
ASME J. Turbomach.
0889-504X,
113
, pp.
509
537
.
34.
Sieger
,
K.
,
Schiele
,
R.
,
Kaufmann
,
F.
,
Wittig
,
S.
, and
Rodi
,
W.
, 1995, “
A Two-Layer Turbulence Model for the Calculation of Transitional Boundary-Layers
,”
ERCOFTAC Bulletin
,
24
, pp.
21
25
.
35.
Ellenberger
,
K.
, and
Gallus
,
H.
, 1999, “
Experimental Investigations of Stall Flutter in a Transonic Cascade
,” ASME Paper No. 99-GT-409.
36.
Schreiber
,
H.
, and
Starken
,
H.
, 1981, “
On the Definition of the Axial Velocity Density Ratio in Theoretical and Experimental Cascade Investigations
,”
Symposium on Measuring Techniques for Transonic and Supersonic Flows in Cascades and Turbomachines
, Lyon, France.
You do not currently have access to this content.