The conjugate calculation technique has been used for the three-dimensional thermal load prediction of a film-cooled test blade of a modern gas turbine. Thus, it becomes possible to take into account the interaction of internal flows, external flow, and heat transfer without the prescription of heat transfer coefficients. The numerical models consist of all internal flow passages and cooling hole rows, including shaped holes. Based on the results, deficiencies of the test configuration close to the leading edge region and in the blade tip region have been detected, which lead to hot spots and surface areas of high thermal load. These regions of high thermal load have been confirmed by thermal index paint measurements in good agreement to the conjugate calculation results. Based on the experimental and numerical results, recommendations for the improvement of the blade cooling were derived and an improved blade-cooling configuration has been designed. The conjugate calculation results, as well as new measurement data, show that the changes in the cooling design have been successful with respect to cooling performance. Regions of high thermal load have vanished, and effective cooling is reached for all critical parts of the test blade.

1.
Heidmann
,
J. D.
,
Kassab
,
A. J.
,
Divo
,
E. A.
,
Rodriguez
,
F.
, and
Steinthorsson
,
E.
, 2003, “
Conjugate Heat Transfer Effects on a Realistic Film-Cooled Turbine Vane
,” ASME Paper No. GT2003-38553.
2.
Li
,
H.
, and
Kassab
,
A. J.
, 1994, “
Numerical Prediction of Fluid Flow and Heat Transfer in Turbine Blades with Internal Cooling
,” AIAA Paper No. 94-2933.
3.
Li
,
H.
, and
Kassab
,
A. J.
, 1994, “
A Coupled FVM∕BEM Approach to Conjugate Heat Transfer in Turbine Blades
,” AIAA Paper No. 94-1981.
4.
Rigby
,
D. L.
, and
Lepicovsky
,
J.
, 2001, “
Conjugate Heat Transfer Analysis of Internally Cooled Configurations
,” ASME Paper No. 2001-GT-405.
5.
Adami
,
P.
,
Martelli
,
F.
, and
Montomoli
,
F.
, 2003, “
A Finite Volume Method for the Conjugate Heat Transfer in Film Cooling Devices
,”
Proceedings of the XVI Int. Symposium on Air Breathing Engines
, Paper No. ISABE-2003-1066.
6.
Kao
,
K.-H.
, and
Liou
,
M.-S.
, 1996, “
On the Application of Chimera∕Unstructured Hybrid Grids for the Conjugate Heat Transfer
,” ASME Paper No. 96-GT-156.
7.
Han
,
Z.-X.
,
Dennis
,
B. H.
, and
Dulikravich
,
G. S.
, 2000, “
Simultaneous Prediction of External Flow-Field and Temperature in Internally Cooled 3-D Turbine Blade Material
,” ASME Paper No. 2000-GT-253.
8.
Takahashi
,
T.
,
Watanabe
,
K.
, and
Takahashi
,
T.
, 2000, “
Thermal Conjugate Analysis of a First Stage Blade in a Gas Turbine
,” ASME Paper No. 2000-GT-251.
9.
York
,
W. D.
, and
Leylek
,
J. H.
, 2003, “
Three-Dimensional Conjugate Heat Transfer Simulation of an Internally-Cooled Gas Turbine Vane
,” ASME Paper No. GT2003-38551.
10.
Imlay
,
S. T.
,
Soetrisno
,
M.
, and
Roberts
,
D. W.
, 1996, “
Coupled Flow and Heat Transfer Analysis Using Hybrid Structured-Unstructured Grids
,” AIAA Paper No. 96-0622.
11.
Okita
,
Y.
, and
Yamawaki
,
S.
, 2002, “
Conjugate Heat Transfer Analysis of Turbine Rotor-Stator System
,” ASME Paper No. GT-2002-30615.
12.
Facchini
,
B.
,
Magi
,
A.
, and
Del Greco
,
A. S.
, 2004 “
Conjugate Heat Transfer Simulation of a Radially Cooled Gas Turbine Vane
,” ASME Paper No. GT2004-54213.
13.
Bohn
,
D.
, and
Bonhoff
,
B.
, 1994, “
Berechnung der Kühl- und Störwirkung eines filmgekühlten transonisch durchströmten Turbinengitters mit diabaten Wänden
,” VDI-Bericht
1109
, Germany, pp.
261
275
(in German).
14.
Bohn
,
D.
,
Bonhoff
,
B.
,
Schönenborn
,
H.
, and
Wilhelmi
,
H.
, 1995, “
Validation of a Numerical Model for the Coupled Simulation of Fluid Flow and Diabatic Walls With Application to Film-Cooled Turbine Blades
,” VDI-Bericht, Germany,
1186
, pp.
259
272
.
15.
Bohn
,
D.
,
Krüger
,
U.
, and
Kusterer
,
K.
, 2001, “
Conjugate Heat Transfer: An Advanced Computational Method for the Cooling Design of Modern Gas Turbine Blades and Vanes
,”
Heat Transfer in Gas Turbines
,
B.
Sundén
and
M.
Faghri
, eds.
WIT Press
,
Southampton, UK
, pp.
58
108
.
16.
Bohn
,
D.
, and
Kusterer
,
K.
, 2003, CHTflow,
Conjugate Heat Transfer and Flow Simulation Code
, Version 3.3, Reference Manual, Institute of Steam and Gas Turbines, B&B-AGEMA, Aachen.
17.
Bohn
,
D.
,
Kusterer
,
K.
,
Sugimoto
,
T.
, and
Tanaka
,
R.
, 2003, “
Conjugate Analysis of a Test Configuration for a Film-Cooled Blade Under Off-Design Conditions
,”
Proceedings of the XVI Int. Symposium on Air Breathing Engines
, Paper No. ISABE-2003-1176.
18.
Kusterer
,
K.
,
Bohn
,
D.
,
Sugimoto
,
T.
, and
Tanaka
,
R.
, 2003, “
Conjugate Heat Transfer Analysis of a Test Configuration for a Film-Cooled Blade
,”
Proceedings of the 8th International Gas Turbine Conference
, IGTC2003Tokyo TS-083,
Tokyo, Japan
.
19.
Kusterer
,
K.
,
Bohn
,
D.
,
Sugimoto
,
T.
, and
Tanaka
,
R.
, 2004, “
Conjugate Calculations for a Film-Cooled Blade Under Different Operating Conditions
,” ASME Paper No. GT2004-53719.
20.
Baldwin
,
B. S.
, and
Lomax
,
H.
, 1978, “
Thin Layer Approximation and Algebraic Model for Separated Turbulent Flows
,” AIAA Paper No. 78-257.
21.
Sugimoto
,
T.
,
Nagai
,
K.
,
Ryu
,
M.
,
Tanaka
,
R.
,
Kimura
,
T.
, and
Nagatomo
,
T.
, 2002, “
Development of a 20MW-Class High-Efficiency Gas Turbine L20A
,” ASME Paper No. GT2002-30255.
22.
Sugimoto
,
T.
,
Nagai
,
K.
,
Ryu
,
M.
,
Tanaka
,
R.
, and
Kimura
,
T.
, 2004, “
A Review of L20A Engine Design and Field Operating Experience
,” ASME Paper No. GT2004-53411.
23.
Bohn
,
D.
,
Becker
,
V.
, and
Kusterer
,
K.
, 1997, “
3-D Conjugate Flow and Heat Transfer Calculations of a Film-Cooled Turbine Guide Vane at Different Operating Conditions
,” ASME Paper No. 97-GT-23.
You do not currently have access to this content.