Results are presented of extensive boundary layer measurements taken over a flat, smooth plate model of the front one-third of a turbine blade and over the model with an embedded strip of realistic rough surface. The turbine blade model also included elevated freestream turbulence and an accelerating freestream in order to simulate conditions on the suction side of a high-pressure turbine blade. The realistic rough surface was developed by scaling actual turbine blade surface data provided by U.S. Air Force Research Laboratory. The rough patch can be considered to be an idealized area of distributed spalls with realistic surface roughness. The results indicate that bypass transition occurred very early in the flow over the model and that the boundary layer remained unstable (transitional) throughout the entire length of the test plate. Results from the rough patch study indicate the boundary layer thickness and momentum thickness Reynolds numbers increased over the rough patch and the shape factor increased over the rough patch but then decreased downstream of the patch. It was also found that flow downstream of the patch experienced a gradual retransition to laminar-like behavior but in less time and distance than in the smooth plate case. Additionally, the rough patch caused a significant increase in streamwise turbulence intensity and normal turbulence intensity over the rough patch and downstream of the patch. In addition, the skin friction coefficient over the rough patch increased by nearly 2.5 times the smooth plate value. Finally, the rough patch caused the Reynolds shear stresses to increase in the region close the plate surface.

1.
Archer
,
R. D.
, and
Saarlas
,
M.
, 1996,
An Introduction to Aerospace Propulsion
,
Prentice-Hall
,
Englewood Cliffs, NJ
, pp.
14
24
.
2.
Koch
,
C. C.
, and
Smith
,
L. H.
, 1976, “
Loss Sources and Magnitudes in Axial-Flow Compressors
,”
J. Eng. Power
0022-0825,
98
(
3
), pp.
411
424
.
3.
Boyle
,
R. J.
, and
Senyitko
,
R. G.
, 2003, “
Measurements and Predictions of Surface Roughness Effects on Turbine Vane Aerodynamics
,” ASME Paper No. GT2003-38580.
4.
Bons
,
J. P.
,
McClain
,
S. T.
,
Taylor
,
R. P.
, and
Rivir
,
R. B.
, 2001, “
The Many Faces of Turbine Surface Roughness
,” ASME Paper No. 2001-GT-163.
5.
Taylor
,
R. P.
, 1990, “
Surface Roughness Measurements on Gas Turbine Blades
,”
ASME J. Turbomach.
0889-504X,
112
, pp.
175
180
.
6.
Bogard
,
D. G.
,
Schmidt
,
D. L.
, and
Tabbita
,
M.
, 1998, “
Characterization and Laboratory Simulation of Turbine Airfoil Surface Roughness and Associated Heat Transfer
,”
ASME J. Turbomach.
0889-504X,
120
, pp.
337
342
.
7.
Tarada
,
F. H. A.
, 1987, “
Heat Transfer to Rough Turbine Blading
,” Ph.D. thesis, University of Sussex, Falmer, Brighton, UK., pp.
40
42
.
8.
Boyle
,
R. J.
, 1994, “
Prediction of Surface Roughness and Incidence Effects on Turbine Performance
,”
ASME J. Turbomach.
0889-504X,
116
, pp.
745
751
.
9.
Moon
,
H. K.
,
O’Connel
,
T.
, and
Glezer
,
B.
, 1999, “
Channel Height Effect on Heat Transfer and Friction in a Dimpled Passage
,” ASME Paper No. 99-GT-163.
10.
Lin
,
Y. L.
,
Shih
,
T. I. P.
, and
Chyu
,
M. K.
, 1999, “
Computation of Flow and Heat Transfer in a Channel With Rows of Hemispherical Concavities
,” ASME Paper No. 99-GT-263.
11.
Vukoslavčević
,
P. V.
, and
Wallace
,
J. M.
, 2002, “
The Simultaneous Measurement of Velocity and Temperature in Heated Turbulent Air Flow Using Thermal Anemometry
,”
Meas. Sci. Technol.
0957-0233,
13
, pp.
1615
1624
.
12.
McIlroy
,
H. M.
Jr.
, 2004, “
The Boundary Layer Over Turbine Blade Models With Realistic Rough Surfaces
,” Ph.D. dissertation, Department of Mechanical Engineering, University of Idaho, Moscow, ID, pp.
5
24
.
13.
Bunker
,
R. S.
, 1997, “
Separate and Combined Effects of Surface Roughness and Turbulence Intensity on Vane Heat Transfer
,”
International Gas Turbine & Aeroengine Congress & Exhibition
,
Orlando, FL.
, ASME Paper No. 97-GT-135.
14.
Young
,
C. D.
,
Han
,
J. C.
,
Huang
,
Y.
, and
Rivir
,
R. B.
, 1992, “
Influence of Jet-Grid Turbulence on Flat Plate Turbulent Boundary Layer Flow and Heat Transfer
,”
J. Heat Transfer
0022-1481,
114
, pp.
65
72
.
15.
Bons
,
J. P.
,
Sondergaard
,
R.
, and
Rivir
,
R. B.
, 1999, “
Control of Low Pressure Turbine Separation Using Vortex Generator Jets
,”
37th AIAA Aerospace Sciences Meeting and Exhibit
,
Reno, NV
, Paper No. AIAA 99-0367.
16.
Giel
,
P. W.
,
Bunker
,
R.
,
van Fossen
,
G. J.
, and
Boyle
,
R. J.
, 2000, “
Heat Transfer Measurements and Predictions on a Power Generation Gas Turbine Blade
,” NASA∕TM-2000-210021,
Glenn Research Center
.
17.
Lake
,
J. P.
,
King
,
P. I.
, and
Rivir
,
R. B.
, 1999, “
Reduction of Separation Losses on a Turbine Blade With Low Reynolds Number
,”
37th AIAA Aerospace Sciences Meeting and Exhibit
,
Reno, NV
, Paper No. AIAA 99-0242.
18.
Roach
,
P. E.
, 1987, “
The Generation of Nearly Isotropic Turbulence by Means of Grids
,”
Am. Inst. Aero. Astro.
,
8
(
2
), pp.
82
92
.
19.
Blair
,
M. F.
, 1982, “
Influence of Free-Stream Turbulence on Turbulent Boundary Transition in Favorable Pressure Gradients
,”
J. Eng. Power
0022-0825,
104
, pp.
743
750
.
20.
Blair
,
M. F.
, 1992, “
Boundary-Layer Transition in Accelerating Flows With Intense Freestream Turbulence: Part I. Disturbances Upstream of Transition Onset
,”
ASME J. Eng. Ind.
0022-0817,
114
, pp.
313
321
.
21.
Blair
,
M. F.
, 1992, “
Boundary-Layer Transition in Accelerating Flows With Intense Freestream Turbulence: Part II. The Zone on Intermittent Turbulence
,”
ASME J. Eng. Ind.
0022-0817,
114
, pp.
322
332
.
22.
Volino
,
R. J.
, and
Simon
,
T. W.
, 1995, “
Bypass Transition in Boundary Layers Including Curvature and Favorable Pressure Gradient Effects
,”
ASME J. Turbomach.
0889-504X,
117
, pp.
166
174
.
23.
Volino
,
R. J.
, and
Simon
,
T. W.
, 1997, “
Velocity and Temperature Profiles in Turbulent Boundary Layer Flows Experiencing Streamwise Pressure Gradients
,”
J. Heat Transfer
0022-1481,
119
, pp.
443
439
.
24.
Zhou
,
D.
, and
Wang
,
T.
, 1995, “
Effects of Elevated Free-Stream Turbulence on Flow and Thermal Structures in Transitional Boundary Layers
,”
ASME J. Turbomach.
0889-504X,
117
, pp.
407
417
.
25.
Zhou
,
D.
, and
Wang
,
T.
, 1996, “
Combined Effects of Elevated Free-Stream Turbulence and Streamwise Acceleration on Flow and Thermal Structures in Transitional Boundary Layers
,”
Exp. Therm. Fluid Sci.
0894-1777,
12
, pp.
338
351
.
26.
Keller
,
F. J.
, and
Wang
,
T.
, 1996, “
Flow and Heat Transfer Behavior in Transitional Boundary Layers With Streamwise Acceleration
,”
ASME J. Turbomach.
0889-504X,
118
, pp.
314
326
.
27.
Wang
,
T.
, and
Keller
,
F. J.
, 1999, “
Intermittent Flow and Thermal Structures of Accelerating Transitional Boundary Layers: Part 1—Mean Quantities
,”
ASME J. Turbomach.
0889-504X,
121
, pp.
98
104
.
28.
Wang
,
T.
, and
Keller
,
R. J.
, 1999, “
Intermittent Flow and Thermal Structures of Accelerating Transitional Boundary Layers: Part 2—Fluctuation Quantities
,”
ASME J. Turbomach.
0889-504X,
121
, pp.
106
112
.
29.
Mayle
,
R. E.
, 1991, “
The Role of Laminar-Turbulent Transition in Gas Turbine Engines
,”
ASME J. Turbomach.
0889-504X,
113
, pp.
509
517
.
30.
Dunn
,
M. G.
, 2001, “
Convective Heat Transfer and Aerodynamics in Axial Flow Turbines
,”
ASME J. Turbomach.
0889-504X,
123
, p.
637
669
.
31.
Stoots
,
C.
,
Becker
,
S.
,
Condie
,
K.
,
Durst
,
D.
, and
McEligot
,
D.
, 2001, “
A Large-Scale Matched Index-of-Refraction Flow Facility for LDA Studies Around Complex Geometries
,”
Exp. Fluids
0723-4864,
30
, pp.
391
398
.
32.
Budwig
,
R.
, 1994, “
Refractive Index Matching Methods for Liquid Flow Investigations
,”
Exp. Fluids
0723-4864,
17
, pp.
350
355
.
33.
Radomsky
,
R. W.
, and
Thole
,
K. A.
, 2000, “
Measurements and Predictions of a Highly Turbulent Flowfield in a Turbine Vane Passage
,”
ASME J. Fluids Eng.
0098-2202,
122
, p.
667
.
34.
McIlroy
,
H. M.
Jr.
,
Budwig
,
R. S.
, and
McEligot
,
D. M.
, 2003, “
Scaling of Turbine Blade Roughness for Model Studies
,” ASME Paper IMECE2003-42167.
35.
Dalling
,
W. J.
, 2003, “
An Experimental Study of Wall Shear Stress on Distributed Rough Surfaces in a Turbulent Boundary Layer
,” M.S. thesis, University of Idaho, Moscow Idaho, pp.
43
47
.
36.
Fernholtz
,
H. H.
, and
Warnack
,
D.
, 1998, “
The Effects of a Favourable Pressure Gradient and of Reynolds Number on an Incompressible Axisymmetric Turbulent Boundary Layer. Part 1. The Turbulent Boundary Layer
,”
J. Fluid Mech.
0022-1120,
359
, pp.
343
345
.
37.
Radomsky
,
R. W.
, and
Thole
,
K. A.
, 2002, “
Detailed Boundary Layer Measurements on a Turbine Stator Vane at Elevated Freestream Turbulence Levels
,”
ASME J. Turbomach.
0889-504X,
124
, pp.
116
117
.
You do not currently have access to this content.